
Modeling Sea Surfaces

A Tutorial on Fourier Transform Techniques

Curtis D. Mobley

Sequoia Scientific, Inc.
2700 Richards Road, Suite 107

Bellevue, WA 98005

Version 2.0

October 2016

2

Abstract

The mathematics relating wind-blown sea surfaces and wave variance spectra is well known,
but seldom well explained, and the devil is in the details. The goal of this tutorial is to fill in
those details as needed for writing computer programs to carry out various calculations so that
the results are both physically correct and computationally efficient. The tutorial first shows how
measurements of wave elevation for a random sea surface lead to an elevation variance spectrum,
which shows how much variance (or energy) is contained in waves of different spatial or temporal
frequencies. It then shows how a variance spectrum can be used to generate random realizations
of a sea surface. The basic concepts are introduced for idealized sea surfaces with just one spatial
dimension. More realistic two-dimensional surfaces are then considered. After investigation of
surfaces at a single instant of time, the generation of time-dependent surfaces is presented.

However, not all sea surface roughness is generated by wind. For example, turbulence induced
by unstable shear flows is an another process that can roughen a water surface. For such surfaces,
there is no wind-dependent elevation variance spectrum, but the surface roughness properties can
be described by surface elevation autocovariance functions. The Wiener-Khinchin theorem shows
how surface autocovariance functions are related to surface elevation variance spectra. Using this
theorem, an autocovariance can be converted to a spectral density, which can then be used for
surface generation just as for wind-generated waves. The final chapter discusses how surfaces can
be generated beginning with an autocovariance function.

Computational matters such as array indexing and ordering of frequency arrays are emphasized.
Appendices give an overview of the computation of discrete Fourier transforms via the fast Fourier
transform, and an overview of wind-dependent wave variance spectra.

Most of this material is available as web pages in the Surfaces, Level 2 section of the Ocean
Optics Web Book, beginning at
http://www.oceanopticsbook.info/view/surfaces/level_2/modeling_sea_surfaces.
The IDL computer codes used to generate many of the figures in this report can be downloaded
from the web book pages. A pdf of this report can be downloaded from the Mobley (2016) reference
in the references section of the Ocean Optics Web Book at
http://www.oceanopticsbook.info/view/references/publications.

http://www.oceanopticsbook.info/view/surfaces/level_2/modeling_sea_surfaces
http://www.oceanopticsbook.info/view/references/publications

Acknowledgments

The first versions of the IDL computer codes used to generate the figures in this tutorial were
developed in the course of work supported by NASA under contract NNH12CD06C to Curtis
Mobley titled Radiative Transfer Modeling for Improved Ocean Color Remote Sensing. The writing
of this tutorial was supported by my hard-working wife Ann Kruse and many unfunded weekends
and evenings. Converting the hard copy tutorial to web pages for the Ocean Optics Web Book was
supported by NASA under grant NNX14AP66G.

Permission to Reproduce

This report is Copyright c© by Curtis D. Mobley, 2016. However, permission is hereby granted to re-
produce this work all or in part, with appropriate acknowledgment, for non-commercial educational
and research purposes.

Errata

Compared to Version 1 of this report (dated September 2014), several typographical errors have
been corrected, additional explanations are given in various places, and the new Chapter 5 on
autocovariance functions and Appendix A on calculation of discrete Fourier transforms have been
added. Please send any comments, questions, or error identifications on the present version to
curtis.mobley@sequoiasci.com. The version on the Ocean Optics Web Book will be kept up to
date as material is added or errors are corrected. This version of the tutorial replaces the previous
version.

ii

Contents

List of Figures iii

List of Tables v

1 Mathematical Preliminaries 1
1.1 Sinusoidal Wave Representations . 2
1.2 Continuous Fourier Transforms . 5
1.3 Sampling . 6
1.4 Discrete Fourier Transforms . 8

1.4.1 Alternate Formulations . 10
1.5 Parseval’s Identity . 12

2 One-Dimensional, Time-Independent Surfaces 13
2.1 Wave Energy . 13
2.2 Wave Spectra . 14
2.3 Surfaces to Variance Spectra . 16
2.4 Frequency Ordering . 20
2.5 Variance Spectra to Surfaces . 22

2.5.1 Theory . 23
2.5.2 Example: A Roundtrip Calculation . 27

2.6 Numerical Resolution . 29

3 Two-Dimensional, Time-Independent Surfaces 36
3.1 Surfaces to Variance Spectra . 37

3.1.1 Example: A Random Sea Surface . 37
3.1.2 Example: A Sea Surface of Crossing Sinusoids 39

3.2 Variance Spectra to Surfaces . 42
3.2.1 Theory . 42
3.2.2 Example: A Two-Dimensional Sea Surface . 46

3.3 Effect of the Spreading Function . 48
3.4 Resampling the DFT Grid for Ray Tracing . 50
3.5 Example: Reflectance by Different Surface Models 52
3.6 Example: Tiling a Two-dimensional Surface . 54

i

4 Two-Dimensional, Time-Dependent Surfaces 56

5 Autocovariance Functions and the Wiener-Khinchin Theorem 60
5.1 Autocovariance . 61
5.2 The Wiener-Khinchin Theorem . 62
5.3 The Horoshenkov Autocorrelation Function . 63

5.3.1 The Horoshenkov Variance Spectrum . 64
5.4 Numerical Illustration of the Wiener-Khinchin Theorem 66
5.5 Sampling Strategy and Computational Details . 69

5.5.1 Idle Speculations . 74
5.5.2 Lessons Learned . 75

5.6 Turbulence-generated Water Surfaces . 77
5.7 Two-dimensional Water Surfaces . 78

A Computation of Discrete Fourier Transforms 82
A.1 Example Calculations . 83
A.2 Timing . 86

B Wave Spectra 90
B.1 Overview of Wave Spectra . 90
B.2 The Pierson-Moskowitz Omnidirectional Gravity Wave Spectrum 95
B.3 The Elfouhaily et al. Directional Gravity-Capillary Wave Spectrum 98

B.3.1 Spreading Functions . 101

References 103

ii

List of Figures

1.1 Illustration of sampling the harmonics of a given wave and of aliasing 7
1.2 Illustration of Sampling a Sinusoid . 11

2.1 A 1-D random sea surface and its Fourier transform and variance spectrum 18
2.2 A 1-D surface composed of cosine waves . 21
2.3 A 1-D surface composed of sine waves . 22
2.4 Example of a 1-D random sea surface generated from the Pierson-Moskowitz spectrum 28
2.5 Example sampling of elevation and slope spectra for N = 1024 32
2.6 Example sampling of elevation and slope spectra for N = 65536 32
2.7 Example 1-D surfaces and slopes created using true and adjusted variance spectra . 35

3.1 A 2-D random sea surface and its Fourier transform and two-sided variance spectrum 38
3.2 A 2-D sea surface composed of two crossing sinusoids 41
3.3 Example 2-D sea surface and underlying spectrum and Fourier amplitudes 47
3.4 Perspective view of a 2-D sea surface with S = 2 . 49
3.5 Perspective view of a 2-D sea surface with S = 20 . 50
3.6 Mapping a rectangular DFT grid to a hexagonal grid of triangles 51
3.7 A sea surface defined by a rectangular DFT grid and by the corresponding grid of

triangular wave facets . 53
3.8 Energy reflectance by different sea surface models . 54
3.9 Example of tiling a 2-D surface . 55

4.1 A time-dependent sequence of 2-D sea surfaces . 58

5.1 Horoshenkov autocovariance and variance spectral density functions 65
5.2 Illustration of the Wiener-Khinchin theorem . 67
5.3 Spatial correlation function of wind-generated waves 68
5.4 Same as Fig. 5.2, but for 100 surface realizations . 70
5.5 Same as Fig. 5.2, but for 1000 surface realizations 71
5.6 Illustration of sampling strategy . 72
5.7 Illustration of inadequate sampling . 76
5.8 Example of a 1-D turbulence-generated water surface 79
5.9 Example of a 2-D turbulence-generated water surface 80
5.10 A slice through the surface of Fig. 5.9 . 80

iii

5.11 A wind-generated surface for a 5 m s−1 wind speed 81

A.1 DFT for a 16-point surface . 84
A.2 DFT for the first 14 points of the surface of Fig. A.1 85
A.3 FFT of the surface of Fig. A.2 padded with zeros to get 16 points 87
A.4 Time required to compute 1 DFT for N between 1000 and 4100. 88
A.5 Time required to compute 1000 DFTs using the IDL FFT routine for N between

1000 and 1200. 88
A.6 Time required to compute 1,000 DFTs using the IDL FFT routine for N between

1000 and 4100 . 89

B.1 The Pierson-Moskowitz variance spectrum as a function of wind speed, k and ω . . . 97
B.2 The Pierson-Moskowitz slope spectrum as a function of wind speed and k 97
B.3 Omnidirectional ECKV elevation and slope spectra for fully developed seas as a

function of wind speed . 100
B.4 Omnidirectional ECKV elevation and slope spectra for young to fully developed seas

for a wind speed of 10m s−1 . 101
B.5 Spreading functions for directional wave spectra . 102

iv

List of Tables

2.1 Spatial frequencies and wavelengths corresponding to peak variance for the Pierson-
Moskowitz spectrum . 30

3.1 Comparison of Cox-Munk mean square slopes and values for a DFT-generated 2-D
surface . 49

B.1 Comparison of variances computed two different ways. The values of |ẑ(n)|2 are
taken from the lower-right panel of Fig. 2.1. 92

B.2 Summary of spectral quantities. 95

v

CHAPTER 1

Mathematical Preliminaries

“I told her [his younger sister] to start at the beginning and read as far as you can get until you’re
lost. Then start again at the beginning and keep working through until you can understand the
whole book.” –Richard Feynman in Richard Feynman: A Life in Science

* * * * *

Wind-blown, random sea surfaces and the related concept of wave variance spectra are funda-
mental to a wide range of oceanographic problems, which include reflection and transmission of
light, exchange of momentum and energy between winds and currents, loading of structures, and
ship dynamics. Various mathematical techniques for modeling sea surfaces are therefore widely
used in oceanography and ocean engineering. Unfortunately, sea surfaces arise from very compli-
cated hydrodynamics, and it should be no surprise that the mathematics needed to describe them
can also be rather complex. This tutorial seeks to explain a subset of those techniques, namely
the use of Fourier transforms to go back and forth between surface realizations and wave variance
spectra, at a level appropriate for students coming upon the material for the first time.

The material presented here is considered well known and can be found in abbreviated form
in many texts and publications. However, “well known” often means that somewhere, sometime,
someone figured something out, but the details were not given. The implication is that if you can’t
figure out the details for yourself, then you are unworthy to benefit from The Master’s Wisdom. I
do agree that figuring out this material from scratch, as I have had to do, is a worthwhile exercise
that leads to true understanding. However, it is also very time consuming (more than three months
of effort in my case for the material presented here), and time for reinventing wheels is a luxury few
scientists can afford. I would argue that a lucid explanation can also lead to in-depth understanding,
with time left over for application of the knowledge to solving new problems. My goal here is to
explain the material at the level of detail needed to write computer programs. In particular, certain
pesky special cases are considered, as is the often confusing issue of array indexing. The reader can
judge whether or not my explanations are lucid.

The discussion begins with a physically and mathematically complicated but very important
topic: how to describe and model wind-blown sea surfaces. The eventual goal is twofold. The first

1

goal is to show how to describe a time-dependent sea surface with waves of all scales propagating
in any direction. The second is to show how to generate time-dependent random realizations of
such surfaces so that the generated surfaces are close to what would be observed in nature. Such
generated surfaces can be used, for example, as the basis for Monte Carlo simulations of the optical
reflection and transmission properties of sea surfaces, and even to simulate the visual appearance
of water surfaces for use in computer-generated movie scenes.

Real sea surfaces exhibit extremely complicated shapes involving waves of many sizes traveling
in all directions. Those waves arise from various nonlinear physical processes that transfer energy
from the wind to the water, and between waves of different sizes. It should not come as a surprise
that the mathematics needed to describe these processes and the resulting sea surfaces is also
complex, both in the psychological sense and in the

√
−1 sense.

If you come to optical oceanography from a background in physics, electrical engineering, or
numerical analysis, then you are probably already familiar with Fourier transforms, variance (or
energy or power) spectra, sampling theory, and the other tools that we will need. However, if you
began life as a biological oceanographer, then even the idea of complex numbers may strike fear in
your nonmathematical heart. We will therefore begin slowly and study various idealized cases in
detail before proceeding to real ocean surfaces. We will progress from the simplest possible physical
context of a snapshot (i.e., the surface at one instant of time) of a one-dimensional (1-D) sea surface,
then a time-independent two-dimensional (2-D) surface, and finally reach the goal of simulating
time-dependent 2-D sea surfaces as are found in nature. The final chapter on the Wiener-Khinchin
theorem shows how surfaces—even non-water surfaces—described by autocorrelation functions can
be simulated.

1.1 Sinusoidal Wave Representations

We describe the sea surface using a Cartesian coordinate system. x is a unit vector chosen to point
in the downwind direction, z is directed upward (from the water to the air) normal to the mean
sea surface at z = 0, and y = z× x is in the cross-wind direction. z(x, y, t) is the surface elevation
in meters at spatial location (x, y) and time t.

Jean-Baptiste Joseph Fourier (1768-1830) proved that, under very general mathematical con-
ditions, an arbitrary function can be written as a sum of sines and cosines of different amplitudes
and wavelengths. The sea surface elevation z(x, y, t) is usually such a function. An exception is a
sea surface with waves curling over and breaking on a beach. There can then be multiple air-water
surfaces for a given (x, y, t): the point on the surface that sees the full sky, the point above a surfer’s
head as the wave curls over her, and the point on the water that supports the surfboard. However,
for a sea surface without breaking waves, there is only one air-water surface for a given location
and time, which can be described as a sum of sinusoids.

We first define the terms and notation needed to describe propagating sinusoidal waves:

• A is the amplitude (in units of meters) of the wave. This is one-half the distance from the
trough to the crest of a sinusoidal wave. Oceanographers often talk about the wave height, h,
which is the distance from a wave trough to a wave crest. Wave height is what most people
visualize when they talk about how “big” a wave is.

2

• T is the temporal period (seconds), usually called just the period. This is the time it takes for
one wave crest to pass by a fixed point, i.e. for the argument of the sinusoid to go through
2π radians.

• f = 1/T is the temporal frequency (1/seconds), usually called just the frequency. This is how
many waves pass by a fixed point per second.

• ω = 2π/T = 2πf is the angular frequency (radians/second). This is the number of waves
passing a fixed point in 2π seconds.

• Λ is the wavelength, or spatial period, (meters). This is the distance from one wave crest to
the next.

• ν = 1/Λ is the wavenumber or spatial frequency (1/meters). This is the number of wavelengths
per meter.

• k = 2π/Λ = 2πν is the angular wavenumber or angular spatial frequency (radians/meter).
This is the number of wavelengths in 2π meters.

• φ is the phase (nondimensional). This fixes the location of a wave crest relative to the origin
of a coordinate system.

There is no uniformity in the literature. People often refer to “the frequency” without specifying
whether they mean f or ω, and “wavenumber” or “spatial frequency” may mean either ν or k.
People use ν, ν̃, or σ for the wavenumber, some use σ for ω, and so on. You just have to figure
it out on a case by case basis. For pedagogic purposes, we will start with wavenumber ν as the
measure of spatial frequency, and then switch to the more common angular spatial frequency k.
We will use ω as the measure of temporal frequency.

Now consider a one-dimensional sea surface with elevation z(x, t) over a spatial region of length
L, e.g. 0 ≤ x ≤ L or −L/2 ≤ x ≤ L/2. We can write z(x, t) as a sum of sinusoids, the nth one of
which is

zn(x, t) = An cos
(

2πnx

L
+ φn ±

2πnt

T

)
, (1.1)

where n = 0, 1, 2, ... is simply an index for which sinusoid is being considered. (Note that we could
just as well write a sine here.) For n = 0 this reduces to a constant offset z0(x, t) = A0 cos(φ0),
which is usually taken to be mean sea level and set to a reference value of 0 via setting A0 = 0.
For the moment, we take t = 0, i.e., we have a snapshot of the ocean surface at time zero. This
sinusoid has a wavelength of Λn = L/n, i.e., the cosine returns to the same value after a distance
of x = L/n. It is a pure cosine in the chosen coordinate system if the phase is 0 or an even integer
multiple of ±π. If the phase is an odd integer multiple of ±π/2 it is a sine. If time is included, the
wave is propagating in the +x direction if the time term is −2πnt/T ; the cosine returns to its initial
value after a time of t = T/n. A wave propagating in the −x direction is described by a +2πnt/T

term. The physical angular frequency ωn ≡ 2πn/T is always positive, but mathematically we can
write just +ωnt in the equation and then view a wave propagating in the +x direction as having a
negative temporal frequency.

With this interpretation of ωnt, Eq. 1.1 is conveniently written as

zn(x, t) = An cos(knx + φn + ωnt) , (1.2)

3

where kn = 2πn/L = 2π/Λn is the angular wavenumber of the nth wave of wavelength Λn = L/n.
Likewise, ωn = 2πn/T = 2π/Tn = is the angular frequency of the nth wave with period Tn = T/n.
It may be intuitively easier to think of wavelengths per meter than of wavelengths per 2π meters,
but the convenience of writing k rather than 2π/Λ or 2πν makes k rather than ν the spatial
frequency variable used in most publications. A similar comment holds for ω vs. 2π/T = 2πf , so
ω rather than f is the common choice for the temporal frequency variable.

If we take t = 0, or just combine the time term with the phase, expanding the cosine in Eq.
(1.2) gives an equivalent form

zn(x) = an cos(knx) + bn sin(knx) , (1.3)

where an = An cos φn and bn = −An sinφn, n = 0, 1, 2, ...,, with b0 ≡ 0 for bookkeepping purposes.
This equation can be written in terms of complex numbers:

zn(x) = c+neiknx + c−ne−iknx , (1.4)

where i =
√
−1 and

c+n = (an − ibn)/2, c−n = (an + ibn)/2, and c0 = a0/2 . (1.5)

Recalling that e±iθ = cos θ ± i sin θ, we see that the imaginary parts of Eq. (1.4) add to zero,
so that zn(x) is still a real variable even though it is written in complex form. Also note that
c∗+n = c−n, where c∗ denotes the complex conjugate. (Complex conjugation means replace i by −i

in all terms.) Although two complex numbers in general contain four independent real numbers,
these c+n and c−n pairs contain only two independent numbers, an and bn.

We thus have three ways to describe a sinusoidal wave: (1) The cosine of Eq. (1.2) defined by
an amplitude and a phase; (2) the cosine and sine of Eq. (1.3) defined by two amplitudes, or (3)
the complex exponentials of Eq. (1.4) defined by two complex numbers containing two independent
real numbers. These equations all give the same zn(x), so we are free to choose whichever form
is mathematically convenient for the problem at hand. For visualization of sea surfaces, the real
forms (1.1) or (1.3) are convenient, but the calculations below are most conveniently carried out
using complex exponentials.

Returning now to Fourier, linear wave theory says that we can write the sea surface elevation
as a Fourier series

z(x) =
∞∑

n=0

zn(x) =
a0

2
+

∞∑
n=1

[an cos(knx) + bn sin(knx)] , (1.6)

which in conjunction with Eq. (1.4) can be rewritten as

z(x) =
∞∑

n=−∞
cneiknx . (1.7)

(As previously noted, the a0 or c0 term is usually set to 0.) This equation is the mathematical
heart of our subsequent descriptions sea surfaces.

Although the physics that leads to a given sea surface in general involves non-linear interactions
between waves of different wavelengths and periods, we can write the shape of the resulting sea

4

surface as a linear sum of sinusoids of different frequencies. Owing to the orthogonality of sines and
cosines for different n values as defined above, these wave components zn(x) are independent of each
other. (Orthogonality means that

∫ 2π
0 cos(mx) cos(nx)dx = 0 if m 6= n, etc.) Thus a description

of a time-dependent surface based on an expansion like that of Eq. (1.6) (including the time-
dependent terms as seen in Eq. (1.2)) cannot be used to predict the nonlinear evolution of a sea
surface from a given initial condition. To do that, you must return to the world of hydrodynamics
in all of its nonlinear glory. I lived there as a graduate student and, trust me, it isn’t a pretty
place. For our present purposes, we only want to model the shapes of sea surfaces, not predict their
hydrodynamic development from an initial state, so linear wave representations are adequate.

1.2 Continuous Fourier Transforms

The Fourier transform is the fundamental mathematical tool for our subsequent study of sea sur-
faces. There are many texts on Fourier transforms. Bracewell (1986) is a standard reference, and
excellent sets of lecture notes and videos of lectures can be found on the web. We will therefore
state without proof the results needed for our problem.

Given a real function z(x) of a continuous variable x, the Fourier transform ẑ(ν) of z(x) is
defined as

ẑ(ν) ≡ F{z(x)} ≡
∫ ∞

−∞
z(x)e−i2πνxdx . (1.8)

The inverse Fourier transform is given by

z(x) = F−1{ẑ(ν)} ≡
∫ ∞

−∞
ẑ(ν)e+i2πνxdν . (1.9)

Equations (1.8) and (1.9) are termed a Fourier transform pair. It can be shown that if we insert
the ẑ(ν) integral of Eq. (1.8) into Eq. (1.9), we recover z(x). This is known as Fourier’s integral
theorem. (The proof of this theorem requires a knowledge of the Dirac delta function and consid-
eration of the conditions for convergence of the integrals. We will not worry about such matters in
this tutorial.)

Understanding the units of a Fourier transform is important. In our case, z(x) is sea surface
elevation, and both z and x have units of meters. Equation (1.8) shows that ẑ(ν) thus has units
of m2. The variance of z also has units of m2, which gives the first hint at a profound connection
between the variance of a physical quantity and its Fourier transform. The units of m2 in the
Fourier transform also can be rewritten as m/(1/m), which is units of z divided by units of spatial
frequency ν. The transform ẑ(ν) can thus be interpreted as showing “how much of z there is
per unit frequency interval.” The inverse transform then has units of (z over frequency) times
frequency, which returns the original units of z.

A Fourier transform is a spectral density function. A spectral density function is by definition a
function whose integral over a given frequency interval gives the variance in the physical quantity
contributed by the frequencies in the integration interval. Density functions are rather peculiar
mathematical creatures compared to point functions, which simply give the value of something at
a given value of the independent variable (e.g. the temperature as a function of location x and
time t). The blackbody radiation function is another example of a spectral density function. The
blackbody function shows how much energy is emitted (at a given temperature) per unit frequency

5

interval of the emitted electromagnetic radiation. The blackbody function is discussed on the Ocean
Optics Web Book at
http://www.oceanopticsbook.info/view/light_and_radiometry/level_2/a_common_misconception.
If you are not familiar with the distinction between point and density functions, especially regarding
how to change variables in density functions, you may wish to take a look at that discussion.

The Fourier transfer definitions above with the 2π in the exponents are those of the “Stanford
school” of Bracewell (1986) and Goodman (1996). You will see others in the literature. If we use
k = 2πν as the frequency variable, then Eqs. (1.8) and (1.9) become

ẑ(k) ≡ F{z(x)} ≡
∫ ∞

−∞
z(x)e−ikxdx (1.10)

and
z(x) = F−1{ẑ(k)} ≡ 1

2π

∫ ∞

−∞
ẑ(k)e+ikxdk . (1.11)

This reappearance of the 2π in the second equation is required so that the inverse transform of the
transform gets you back to where you started. In the e±ikx version, some people put the 1/2π in
front of the other integral, and some put a 1/

√
2π in front of each integral. Some authors (e.g.

Press et al., 1992) put the +i in Eq. (1.8) and the −i in Eq. (1.9). The choice of which sign to
use on the i and where to put the 2π is almost a religion—most people stay with what they first
learned, are convinced of the superiority of their definition, and are almost willing to die rather than
change. Fortunately, it doesn’t matter which definitions you use, so long as you are consistent in
how the transform pair is defined so that you get back to where you started if you inverse transform
a transform, or vice versa.

In our work, z(x) is the sea surface elevation, which is a real number. However, even though
z(x) is real, ẑ(ν) (or ẑ(k)) is complex. Expanding the complex exponential in Eq. (1.8) as the sum
of a cosine and a sine, it is easy to see that ẑ∗(ν) = ẑ(−ν). Such functions are called Hermitian.
A real function has a Hermitian Fourier transform. Conversely, if a function is Hermitian, it
has a real inverse Fourier transform. This will be an important constraint below when we wish
to generate random realizations of a sea surface by computing the inverse Fourier transform of a
complex function: we will have to conjure up a Hermitian function so that we end up with a real
sea surface.

1.3 Sampling

We next consider the implications of sampling the sea surface at a finite number of discrete locations
or times. It is always the case when we want to measure the sea surface elevation that we either
make measurements at discrete locations xr, r = 0, 1, ..., N − 1 at a given time, or at discrete times
tr, r = 0, 1, ..., N − 1 at a given location.

For a specific example, consider a region of sea surface L = 10 m long where we take N = 8
evenly spaced samples. This gives a measurement every ∆x = L/N = 0.125 m at a given time. We
are going to describe this surface as a sum of sinusoids. Figure 1.1 illustrates this, with the first
few sinusoids shown as cosines. The cosines in the figure all have the same amplitude and each is
offset vertically for ease of viewing. The dots show the sampled values for each cosine component.

6

http://www.oceanopticsbook.info/view/light_and_radiometry/level_2/a_common_misconception

Figure 1.1: Illustration of sampling the harmonics of a given wave and of aliasing. The vertical
dotted lines show the sampling locations, and the dots show the sampled values for the various
cosine components.

The longest wave that can fit into a region of length L has a wavelength of Λ = L. This is
called the fundamental wave or first harmonic. This wave is shown by the blue n = 1 curve in the
figure. Note that the n = 4 cosine in the figure has a period of 2∆x. The smallest wave than can be
captured correctly in a sampling scheme has a period of twice the sampling interval. This called the
two-point wave or two-point oscillation. Note that a sine term with period 2∆x would be sampled
at arguments of 0, π, 2π, ... where the sine is zero and is thus not detectable. The spatial frequency
1/(2∆x) (or temporal frequency 1/(2∆t) if sampling in time at a given location) is called the spatial
(or temporal) Nyquist frequency. Waves with higher frequencies than the Nyquist frequency are
still sampled, as illustrated by the dots on the wave with n = 10. Note, however, that the pattern
of sampled points for the n = 10 wave is exactly the same as for the n = 2 wave. If all we have
are the measured points, we cannot distinguish between the n = 10 and the n = 2 waves in this
example. This illustrates the phenomenon of aliasing. In general, a wave with a frequency greater
than the Nyquist frequency (i.e., a wavelength or period less that twice the sampling interval) is
still sampled, but it appears as though the high frequency wave is a wave with a frequency less
than the Nyquist frequency. The information about the high frequency (short wavelength) wave
is added to or “aliased” into a lower frequency (longer wavelength) wave, thereby giving incorrect
information about the lower frequency wave. Aliasing places a severe constraint on any sampling
scheme. We can correctly sample only waves with wavelengths that lie between the size of the
spatial region, L, and twice the size of the sampling interval. (In the temporal setting, the limits
are the length of sampling time and twice the temporal sampling interval.)

The relation between a sampled frequency fs greater than the Nyquist frequency, the sampling
rate or Nyquist frequency fNy, and the frequency fa receiving the aliased signal is

fa = |mfNy − fs|

7

where m is the closest integer multiple of the sampling rate to the signal being sampled. In the
example of Fig. 1.1, fs = fn=10 = 10 waves per 10 meters = 1 m−1, fNy = 0.4, and either m = 2
or m = 3 gives fa = |2 × 0.4 − 1| = 0.2 (or fa = |3 × 0.4 − 1| = 0.2). Thus the n = 10 wave is
aliased into the n = 2 wave, just as seen in the figure. Note that many other frequencies are also
aliased into this frequency. For example, a wave with fs = 1.4, corresponding to n = 14, also gives
fa = 0.2 with m = 4, and so on.

1.4 Discrete Fourier Transforms

Now suppose that we have sampled the sea surface z(x) at a set of N evenly spaced points xr, r =
0, 1, ..., N − 1, in a region of size L; xr = r∆x = rL/N . We want to describe this sampled sea
surface z(xr) as a sum of sinusoids. In general, these N values can be represented as a sum of a
constant term, N/2 cosine terms, and N/2 − 1 sine terms (recall that there is no two-point sine
term):

z(xr) =
a0

2
+

N/2∑
u=1

[au cos(kuxr) + bu sin(kuxr)] , (1.12)

with bN/2 ≡ 0. Note that the sum runs from the fundamental frequency (u = 1, k1 = 2π/L) through
the Nyquist frequency (u = N/2, kN/2 = 2π/(2∆x)), with only a cosine term for the two-point wave.
This sum is equivalent to

z(xr) =
N/2∑

u=−N/2+1

cueikuxr , (1.13)

which also contains a total of N independent real and imaginary parts of the cn coefficients. (Recall
from Eq. (1.5) that c−k = c∗k, so these coefficients are not independent for k and −k pairs.) These
equations are the discrete-variable forms of Eqs. (1.6) and (1.7).

We now have a finite number N of discrete samples z(xr) of the sea surface, so we need a
discrete form of the Fourier transform. The discrete Fourier transform (DFT) of z(xr) is defined
as (Bracewell, 1986, page 358)

ẑ(νu) ≡ D{z(xr)} ≡
1
N

N−1∑
r=0

z(xr)e−i2πνuxr for u = 0, ..., N − 1 .

Recalling that νu = u/L = u/(N∆x) and xr = r∆x = rL/N gives νuxr = ru/N . It is also common
to write z(xr) = z(r) and ẑ(νu) = ẑ(u), in which case the previous equation becomes

ẑ(u) = D{z(r)} =
1
N

N−1∑
r=0

z(r)e−i2πru/N . (1.14)

The corresponding inverse discrete Fourier transform is given by

z(r) = D−1{ẑ(u)} =
N−1∑
u=0

ẑ(u)e+i2πru/N for r = 0, ..., N − 1 . (1.15)

It is usually obvious from the context whether a continuous or a discrete Fourier transform is
being used. However, for enhanced clarity, I’ll use F for the continuous transform and D for the

8

discrete, since there are important differences. Likewise, if necessary, a subscript can be appended
to show the frequency variable, e.g. Fν{z(x)} as in Eq. (1.8) or Fk{z(x)} as in Eq. (1.10).

The sums in the last two equations require computing complex exponentials (i.e., sines and
cosines), multiplying by the corresponding values of z(r) or ẑ(u) and adding up the results. These
equations can be evaluated for any value of N . The number of computations required to do this is
of order N2. The computation time for a DFT thus increases very rapidly for large N .

However, a classic paper by Cooley and Tukey (1965) showed how these sums can be computed
in order N log2 N computations, if N is a power of 2. Their technique is now called the fast Fourier
transform or FFT. The difference in computer time becomes enormous for large N . For example,
if N = 212 = 4096, then N log2 N = 4096×12, and the difference in computation time is a factor of
N2/(N log2 N) ≈ 341. Thus in the case of N = 4096, a roughly 6 minute computer run becomes a
1 second run. The development (or, perhaps, reinvention, since the basic idea goes all the way back
to Gauss) of the FFT was a major advance in numerical analysis, which enables the computations
on the following pages to be performed extremely efficiently. Because of the ubiquity of Fourier
transforms in science, engineering, medicine, and economics, the Cooley-Tukey FFT algorithm has
been called “the most important numerical algorithm of our lifetime” (Strang, 1994), and it is
rated in the top ten most important numerical algorithms ever developed (Dongarra and Sullivan,
2000). Subroutines for computing FFTs and inverse FFTs are available in all computer languages
commonly used in science (Fortran, C++, Python, IDL, Matlab, etc). Appendix A gives examples
of DFT calculations using, and not using, the FFT and discusses the calculations when N is not a
power of 2. Fortunately we do not need to concern ourselves here with the details of how the FFT
algorithm actually works, any more than we need to worry about how a canned subroutine actually
computes the cosine of a number. If you are interested in how the FFT works, a web search will
yield many detailed explanations.

When generating sea surfaces, N can usually be chosen to be a power of 2 so that the FFT
algorithm can be used to evaluate the DFT. It is thus expected that, in practice, the forward and
inverse DFTs to be seen throughout the rest of this tutorial will always be evaluated via FFTs.
I will thus use “DFT” for general discussions, and I’ll use “FFT” when I’m referring to actual
calculations. Keep in mind that the DFT is completely general (any value of N), and that the FFT
is an algorithm for efficient computation of the DFT when N is a power of 2.

The one-dimensional (1-D) equations seen above are easily extended to two or more dimensions.
For two dimensions (x, y), we can sample a region of size Lx by Ly meters over Nx points in the x

direction and Ny points in the y direction, with Nx and Ny both powers of 2 so we can use FFTs.
Equations (1.12) and (1.13) then become

z(xr, ys) =
a0

2
+

Nx/2∑
u=1

Ny/2∑
v=1

[au,v cos(kuxr + kvys) + bu,v sin(kuxr + kvys)]

=
Nx/2∑

u=−Nx/2+1

Ny/2∑
v=−Ny/2+1

cu,ve
i(kuxr+kvys) . (1.16)

The corresponding 2-D DFT pair is

ẑ(u, v) = D{z(r, s)} =
1

NxNy

Nx−1∑
r=0

Ny−1∑
s=0

z(r, s)e−i2π(ru/Nx+sv/Ny) (1.17)

9

and

z(r, s) = D−1{ẑ(u, v)} =
Nx−1∑
u=0

Ny−1∑
u=0

ẑ(u, v)e+i2π(ru/Nx+sv/Ny) . (1.18)

We emphasized above that the continuous function ẑ(ν) defined by the continuous Fourier
transform (1.8) is a density function with units of z(x) per spatial frequency interval, e.g., m/(1/m)
if z is sea surface height in meters. However, the discrete functions ẑ(u) and ẑ(u, v) defined by the
discrete Fourier transforms (1.14) and (1.17) have the same units as z(r) and z(r, s). The discrete
Fourier transform is a point function that shows how much of z(r) is contained in a finite frequency
interval ∆ν = 1/L centered at frequency νu = u/L. Discrete Fourier transforms therefore convert
point functions z(r) and z(r, s) to point functions ẑ(u) and ẑ(u, v).

It will be important below to keep notational track of continuous vs. discrete versions of various
functions. Thus S(k) will denote a continuous function of k, S(k = ku) will denote the continuous
function evaluated at the discrete value ku, and S(ku) = S(u) will denote a discrete point function.
This notation is not standard, but it is used here because it is necessary to keep in mind that
S(k = ku) and S(ku) have different units.

The differences in units between continuous and discrete Fourier amplitudes sometimes makes
it tricky to make the transition between discrete and continuous versions of the same quantity. In
particular, it will be necessary to explicitly include the frequency intervals in some of the later cal-
culations that involve both continuous and discrete variables. For example, if we have a continuous
density function and we need to convert to a corresponding discrete function at frequency νu, we
must multiple the continuous function by the finite frequency interval, e.g.

ẑ(u) = ẑ(ν = νu)∆ν. (1.19)

Conversely, if we have discrete amplitudes ẑ(u) and we wish to estimate the continuous spectral
density at νu, then we must divide by the frequency interval:

ẑ(ν = νu) = ẑ(u)/∆ν. (1.20)

(If you are an optical oceanographer familiar with the scattering phase function, you can find
an analogous situation in the estimation of the scattering phase function from measurements of
scattered light. The scattering phase function is a measure of how much light energy is scattered
from an incident direction into a particular direction, per unit solid angle; it therefore has units
of 1/steradian. If you measure the scattered light using an instrument with a finite solid angle
∆Ω, then you get the total amount of energy scattered into the solid angle ∆Ω. To estimate the
phase function from this measurement, you must divide the measured value by the solid angle of
the instrument; this gets you back to units of 1/steradian.)

1.4.1 Alternate Formulations

As always, there are competing definitions. Equations (1.14) and (1.15) are used in Bracewell and
the IDL computer language. Numerical Recipes (Press et al., 1992) interchanges the i and −i.
Numerical Recipes and Matlab put the 1/N factor on the inverse transform. Matlab does not
support array indices of 0, so the summation indices are shifted from 0 to N − 1 to 1 to N , with a
corresponding shift from ru to (r − 1)(u− 1) in the exponentials. As I said at the start, the devil

10

Figure 1.2: Illustration of sampling a sinusoid for different ranges of indices. The gray dashed lines
show the 0 ≤ x < L range.

is in the details, and details like where to put the 1/N factor and differences in array indexing in
different computer languages can cause great misery when it comes time to actually write computer
programs or compare results computed by different canned subroutines.

It is common in mathematics to use the letters i, j, k for dummy summation indices. However,
I’ve already used i for

√
−1 and k for angular wavenumber, so the preceding equations would be

hopelessly confusing if I reused i and k for indices. I will therefore use r and s for indices on spatial
variables, e.g., (xr, ys), and u and v for indices on frequency variables, e.g., ku or νv. n and m also
will be used as needed for dummy indices.

Various authors show different ranges for the summation indices in the equations of the DFT.
I have chosen to let my spatial region be 0 ≤ x < L, in which case it is natural to write Eq. (1.14)
with the sum running from r = 0 to r = N − 1. The thin green curve in Fig. 1.2 shows a sinusoid
of amplitude A = 0.6 and frequency ν = 2/L (i.e, νu with u = 2), which represents either of the
the sines or cosines represented by the complex exponential in the continuous Fourier transform of
Eq. (1.8). The open red circles show this sinusoid sampled at N = 8 values xr = 0, ..., (N − 1)∆x,
with ∆x = L/N . However, you often see the DFT written with the summation indices running
from r = −N/2 + 1, ..., N/2 or r = −N/2, ..., N/2 − 1. For example, Bracewell (1986, page 362)
also writes the DFT pair as

ẑ(u) =
1
N

N/2−1∑
r=−N/2

z(r)e−i2πru/N

z(r) =
N/2−1∑

u=−N/2

ẑ(u)e+i2πru/N .

These alternate index ranges correspond to the exact same summation value. The blue dots in Fig.
1.2 show the sinusoid sampled at N = 8 values from x = −L/2 to x = L/2 −∆x. Because of the
periodicity of the sinusoid, the summation of the blue dots contains the same values as for the red
circles, just in a different order.

11

The ranges of summation indices can be confusing when comparing different texts or computer
programs. Computer programs may let r and u run from 0 to N − 1 or from 1 to N , depending
on whether the computer language allows arrays to have 0 (or negative) indices. Thus a computer
program may have an N -dimensional array of frequencies labeled with indices from 0 to N − 1,
but the frequency values in the array may run from (−N/2 + 1)∆k to (N/2)∆k, and furthermore
the order of the frequency values in the array may different depending on the use of the array (see
§2.4). It’s a confusing mess, but you eventually get used to it.

1.5 Parseval’s Identity

The physical and spectral variables of a continuous Fourier transform pair satisfy∫ ∞

−∞
|z(x)|2dx =

∫ ∞

−∞
|ẑ(ν)|2dν , (1.21)

which is known as Parseval’s identity. The corresponding equation for the discrete Fourier transform
pair defined by Eqs. (1.14) and (1.15) is

N−1∑
r=0

|z(r)|2 = N

N−1∑
u=0

|ẑ(u)|2 . (1.22)

For complex amplitudes, |ẑ|2 = ẑẑ∗. The extension to the two-dimensional case is straightforward:

Nx−1∑
r=0

Ny−1∑
s=0

|z(r, s)|2 = NxNy

Nx−1∑
u=0

Ny−1∑
v=0

|ẑ(u, v)|2 . (1.23)

The discrete forms of Parseval’s relations provide important checks on numerical calculations.
For example, it is easy to misplace factors of N, which appear in different places depending on
the exact form used for the definition of the discrete transforms. As just discussed, the essence of
Parseval’s relations is that the sums of the squares of the physical and spectral values is the same;
the ranges of indexing labels (shown here as 0 to N − 1) are not important (except, perhaps, when
debugging a computer program).

You can take a class in Fourier transforms and prove many more pretty theorems about their
properties. Mathematicians get paid to worry about the conditions for the existence of a Fourier
transform. For example, the function z(x) = sin(1/x), 0 < x ≤ 1 has an infinite number of extrema
as x → 0, and consequently doesn’t have a Fourier transform. However, real ocean surfaces never
behave like this, so we need not trouble ourselves with such matters. We have now assembled the
mathematical tools needed to describe wind-blown sea surfaces, and so we return to oceanography.

12

CHAPTER 2

One-Dimensional, Time-Independent Surfaces

We now begin our study of sea surfaces and their Fourier transforms. For simplicity, we will
introduce the basic ideas in a one-dimensional (1-D) geometry. This corresponds to making mea-
surements of the sea surface along a line of points at a given time, which yields a set of surface
elevations z(xr) = z(r), r = 0, 1, ..., N − 1. The Fourier transform of z(xr) will be in terms of the
spatial frequency νu or the angular spatial frequency ku. Conversely, we could make measurements
at a single spatial point over a set of times. This yields a set of elevations z(tr). The frequency
variable for the Fourier transform of z(tr) would be either the temporal frequency fu or angular
temporal frequency ωu. The math is the same in either case. Our primary interest is generating
sea surfaces at a given time, so the discussion (until Chapter 4) will be in terms of spatial sampling
at a given time, which will be taken as t = 0 and not shown.

2.1 Wave Energy

Consider a sinusoidal wave of amplitude A and wavenumber ν. It can be shown (e.g. Preisendorfer,
1976, Vol. VI, page 72) that the total energy per unit horizontal area of sea surface of this wave,
averaged over a wavelength, is

energy
area

=
1
2
ρgA2 +

1
4
τν2A2 ,

where

ρ ≈ 103 kg m−3 is the density of water,

g ≈ 9.8 m s−2 is the acceleration of gravity,

τ ≈ 0.072 N m−1 (at 25 deg C) is the surface tension of water.

The 1
2ρgA2 term is the sum of the kinetic and gravitational potential energy of the wave. (The

potential energy is relative to the mean sea surface at z = 0.) The 1
4τν2A2 term is the energy

required to stretch the level surface into a sinusoid, working against surface tension. It is easy to
see that the units of these terms are J m−2.

13

The variance of a sinusoidal surface is the average over one wavelength Λ of the surface elevation
squared (assuming that the mean surface is at zero):

var{z} ≡ 1
Λ

∫ Λ

0

[
A sin

(
2πx

Λ

)]2

dx =
1
2
A2 . (2.1)

Thus the energy of a sinusoidal wave also can be written in terms of its variance:

energy
area

=
(

ρg +
1
2
τν2

)
var{z} . (2.2)

2.2 Wave Spectra

Equation (2.1) shows that the variance of the surface elevation is proportional to the amplitude
squared. Equation (2.2) shows that the energy per unit horizontal area of a sinusoidal wave of
a given amplitude and spatial frequency is also proportional to the amplitude squared, or to the
variance of the surface elevation. For a sea surface containing waves of many different amplitudes
and spatial frequencies, the total variance of the sea surface is the sum of the variances of in
the individual waves (the variance of a sum of independent random variables is is the sum of the
variances of the individual variables). Likewise, the total energy of the waves is the sum of the
energies of the individual waves.

We thus have the following line of reasoning:

• For a discrete sample z(r) of a zero-mean sea surface, the variance is

var{z} =
1
N

N−1∑
r=0

|z(r)|2 .

• Parseval’s identity (1.22),
N−1∑
r=0

|z(r)|2 = N

N−1∑
u=0

|ẑ(u)|2 ,

• gives

var{z} =
N−1∑
u=0

|ẑ(u)|2 .

• We therefore identify S(u) ≡ |ẑ(u)|2 as the discrete variance spectrum, with units of m2.

Such reasoning led Schuster (1898) to the seminal observation that Fourier transforms can
be used to decompose the total variance contained in a signal into the variance contained in each
frequency. Schuster’s original interest was in searching for what he call “hidden periodicities” in
weather phenomena (as opposed to obvious periodicities such as daily or seasonal cycles). He soon
applied the technique to looking for periodicities in earthquakes, sunspots, and other phenomena.
Today, the computational speed of the FFT allows his method of analysis to be widely applied in
science, engineering, economics and other fields where it is desired to know the energy or power
of a signal as a function of spatial or temporal frequency. Regardless of what physical quantity is

14

under consideration, the essence of a spectrum is that it gives the distribution of variance in that
quantity as a function of frequency.

In this tutorial we are concerned with generating sea surfaces consistent with a chosen wave
spectrum. For that application, it is the roughness of the surface—that is, the variance of the
surface elevation at different spatial scales—that is of interest, not the energy contained in the
waves. It is thus the variance spectrum that is of interest. If we wanted to model the forces on an
oil derrick or ship, then we would be interested in the energy of the waves and would work with
the energy spectrum.

In our context, the discrete variance spectrum |ẑ(u)|2, u = 0, 1, ..., N − 1 is the variance in sea
surface elevations. It common to call |ẑ(u)|2 the discrete energy or power spectrum. (Publications
often make a cryptic comment about |ẑ(u)|2 giving energy “when suitably normalized,” but they
never seem to show the variance-to-energy conversion factor (ρg + 1

2τν2).) This may permissible
if it is relative values that are of interest, e.g. this frequency has ten times more energy than that
frequency. In those cases, it is only the shape of the spectrum that is important. However, we are
here interested in the variance of the sea surface, so I will correctly refer to |ẑ(u)|2 as the discrete
variance spectrum, whose units are m2 (the units of both |z(r)|2 and |ẑ(u)|2). If you really do want
to get the energy per unit area of the sea surface contained in the frequency interval ∆ν at νu,
multiply |ẑ(u)|2 by ρg ≈ 104 kg m−2 s−2 and you’ll have Joules per square meter. (The surface-
tension term contributes a negligible part of the total variance compared to the larger gravity
waves. Surface tension is significant only for a very young sea surface when only capillary waves
are present.) Some writers (e.g. Holthuijsen, 2007) take care to distinguish between the variance
spectrum |ẑ(u)|2, which describes the statistical properties of the waves, and the energy spectrum
ρg|ẑ(u)|2, which describes a physical property of the waves.

As forewarned in §1.4, the transition from discrete to continuous spectra requires care. (To
complicate matters, the literature is rich with different terms and symbols used for the same
quantities, and the same symbol used for different quantities.) I’ll use S(u) to denote the discrete
variance spectrum |ẑ(u)|2, u = 0, 1, ..., N − 1. S(u) shows how much variance is contained in a
finite frequency interval ∆ν centered at frequency νu. The continuous version of this discrete
point function is the variance spectral density S(ν), which shows how much variance there is per
unit frequency interval at frequency ν. Recalling Eq. (1.20), the conceptual relation between the
discrete and continuous versions of S can be written

S(ν) = lim
∆ν→0

S(u)
∆ν

. (2.3)

In this limit process, we are thinking of taking a finer and finer resolution of the sea surface
elevation z(xr), r = 0, 1, ...N − 1 so that N → ∞ for a fixed physical domain of length L. The
discrete z(xr) then approaches a continuous function z(x). The discrete Fourier transform of z(xr)
then gives more and more frequencies νu with smaller and smaller frequency intervals ∆ν. An
important consequence of Eq. (2.3) that the continuous variance spectral density S(ν) has units of
m2/frequency, which in the present example is m2/(1/m), whereas the discrete variance spectrum
S(u) has units of m2. S(ν) is called the omnidirectional variance spectrum. It is derived in a
slightly different way in Appendix B.1, which discusses continuous wave spectra in both one and
two dimensions. Those results will be cited as needed. If you are new to wave spectra, take a look
at that discussion before proceeding.

15

Plots of the Fourier amplitude squared are also often called “power spectra” because in many
fields it is power rather than energy that is of interest. An example is the power being dissipated
in an electrical circuit. In that case, the power is proportional to the time-dependent electrical
current squared; current replaces surface elevation in our equations and the relevant frequency is
the temporal frequency. It is now common that the Fourier amplitude squared of anything is called
a power spectrum, regardless of what physical variable is under consideration.

As we know from Eq. (1.11), the 1-D surface elevation z(x) is related to the Fourier amplitude
ẑ(k) by

z(x) =
1
2π

∫ ∞

−∞
ẑ(k)e+ikxdk .

Differentiating this equation with respect to x gives the 1-D slope of the sea surface as

σ(x) ≡ dz(x)
dx

=
1
2π

∫ ∞

−∞
ẑ(k)ike+ikxdk .

This leads us to identify ikẑ(k) as the Fourier amplitude corresponding to the sea surface slope.
This gives us two ways to study the slope statistics of random sea surfaces, given the Fourier
amplitude ẑ(k) (which we will learn to create from variance spectra in the following sections). The
first way is to take the inverse Fourier transform of ẑ(k) to obtain z(x), and then to differentiate
z(x) to get the slope. The second way is to take the inverse transform of ikẑ(k) to get the slope
directly, without ever creating the surface z(x) itself.

It is shown in §B.1 that the variance of the sea surface slope, σ2, usually called the mean square
slope or mss, is given by

σ2 = mss =
∫ ∞

0
k2S(k) dk ,

where S(k) is the omnidirectional variance spectrum introduced above. As we saw, S(k) has units
of m2/(rad/m), so the integral above gives the mss in units of rad2. This is nondimensional, but
the label of “rad” reminds us that we can think of the slope as an angle (from the horizontal)
measured in radians. The product k2S(k) is called the slope spectrum.

The extensions of these spectra to two dimensions are made in §B.1, which summarizes a
number of useful relations for one- and two-dimensional variance and slope spectra as needed for
this tutorial.

2.3 Surfaces to Variance Spectra

We begin with a contrived example. We will comment in detail on this simple example in order
to reveal the mathematical subtleties and physical characteristics of Fourier transforms and wave
variance spectra derived from surface elevations. A thorough understanding of this example takes
us much of the way to understanding the case of a real ocean surface.

An ad hoc wave profile is constructed using the formula

z(xr) = z(r) =
N/2∑
j=0

A(j) cos[2πjxrνf + φ(j)] r = 0, ..., N − 1 . (2.4)

The xr locations are given by r∆x = rL/N , where L is the length of the sea surface region being
sampled and N is the number of samples. νf = 1/L is the fundamental spatial frequency, that is,

16

the spatial frequency or wavenumber of the wave with a wavelength of L. The amplitude of the
wave at the jth frequency, j = 1, 2, ..., N/2, is chosen to be

A(j) = 0.1 exp(−3j/N) ,

and A(0) = 0. The phase of the jth wave component is randomly distributed over [0, 2π) using

φ(j) = 2πU

where U is a uniform [0, 1) random number. A different random number is drawn for each j value.
The upper left panel of Fig. 2.1 shows the surface generated in this manner for L = 10 m,

N = 16, and a particular set of random phases. Note that N is a power of 2 as will be needed
for the FFT. The thin colored lines show the N/2 + 1 = 9 waves for each of the frequencies. The
blue line is the wave for the fundamental frequency νf = 1/L = 0.1 m−1; the thin black line is the
two-point wave at the Nyquist frequency νNy = 1/(2∆x) = 0.8 m−1; the purple line is the constant
j = 0 wave, which is set to z = 0 for the mean sea surface. The black dots connected by the thick
black line show the sum of the individual waves. These points represent a discrete sampling of the
continuous sea surface elevation.

In this example, the sampled region of the sea surface is L = 10 m in length, but the N = 16
samples do not include the point at x = 10 m. This is because the surface elevation at x = L is
always the same as at x = 0 when using Fourier techniques. Resolving the surface as a sum of
sinusoids that are harmonics of the fundamental frequency νf = 1/L gives sinusoids that always
return to their initial value after distance L. Real sea surfaces are of course not periodic, but we
do not know the true value at L because it was not measured by the present sampling scheme.
(Likewise, we do not know the true surface elevations at points in between the sampled locations.)
When we use Fourier techniques to generate random surface realization, we are always generating
a sea surface that is a periodic tiling ; the tile dimension is L. This periodicity is useful if we want
to generate a visual rendering of a large region of sea surface from a smaller computed region; the
edges of the small tiles will match perfectly and the larger surface will often look reasonable, if you
don’t look too closely. An example of a tiled two-dimension surface is given in §3.6.

We now take the sequence of the N = 16 real wave elevations z(r) seen in Fig. 2.1 and feed them
into an FFT routine. We soon get back 16 complex numbers, the ẑ(νu) = ẑ(u) Fourier amplitudes,
at a set of 16 corresponding frequencies νu. The upper right panel of Fig. 2.1 plots the real part of
the ẑ(u) complex numbers, and the lower-left panel plots the imaginary part.

We note first that the FFT routine returned both negative and positive spatial frequencies: ν =
(−N

2 + 1)∆ν = −0.7 m−1, ...,−0.1, 0, 0.1, ..., N
2 ∆ν = 0.8 m−1, for a total of N = 16 discrete spatial

frequencies. Note that the frequency spacing ∆ν equals the fundamental frequency νf = 1/L. The
spatial frequency νu tells how many waves fit into 1 m; this is clearly a positive number with an
easily understood physical meaning. Therefore the negative frequencies returned by the FFT may
seem somewhat mysterious. However, these negative frequencies are simply the mathematical price
we pay for the convenience of using complex numbers. Consider, for example, the representation
of the cosine as a sum of complex exponentials for the uth frequency:

cos(2πνuxr) =
1
2

(
ei2πνuxr + e−i2πνuxr

)
=

1
2

(
ei2π(+νu)xr + ei2π(−νu)xr

)
.

17

Figure 2.1: A one-dimensional random sea surface and its Fourier transform and variance spectrum.
The black dots in the upper-left panel show the points z(u) of the sampled sea surface. The light
colored lines show the sinusoidal components used to create the surface. The upper-right panel
shows the real part of the complex amplitude ẑ(νu) and the lower-left panel shows the imaginary
part. The lower right panel shows the two-sided and one-sided discrete variance spectra. Compare
with Figs. 2.2 and 2.3.

We can interpret the complex representation of the real cosine as having one term with a positive
frequency +νu and one term with a negative frequency −νu. A similar equation holds for the
complex representation of sin(2πνuxr). The Fourier transform of a real function always contains
both negative and positive frequencies, which arise from the complex exponential in the definition
of the transform.

Note next that the real parts of the complex amplitudes ẑ(u) are even functions of frequency:
Re{ẑ(−νu)} = Re{ẑ(+νu)}. The imaginary parts are odd functions of frequency: Im{ẑ(−νu)} =
−Im{ẑ(+νu)}. In Fig. 2.1 the positive and negative frequencies are connected by a red arrow
for one particular frequency pair, νu = ±0.6 m−1. If a complex function c(ν) = a(ν) + ib(ν) has
an even real part a(ν) and an odd imaginary part b(ν), then c∗(−ν) = c(ν), i.e. the function is

18

Hermitian. Thus the plots verify that the amplitudes are Hermitian, as is always the case for the
Fourier transform of a real function. The Hermitian character of the complex amplitudes means
that these N = 16 complex numbers contain only 16 independent real and imaginary numbers,
not 32 as would be the case for 16 arbitrary complex numbers. In general the FFT of N real
numbers (e.g., N spatial samples of a sea surface) gives back N independent numbers, so that the
“information content” of the physical and Fourier representations is the same.

The positive frequency at N
2 ∆ν = 0.8 m−1 is the Nyquist frequency. There is, however, no value

for the negative of the Nyquist frequency. Note also in the lower left panel that the imaginary part
of the amplitude is identically zero at the Nyquist frequency. We will explain these values below.

The lower-right panel of the figure shows the values of |ẑ(νu)|2. The values at the negative to
positive frequencies are connected by the black dotted line. These points constitute the two-sided
discrete variance spectrum,

S2S(νu) = |ẑ(νu)|2 for u = −N

2
+ 1, ...,

N

2
. (2.5)

“Two-sided”, denoted by the subscript 2S, refers to spectra showing both the negative and positive
frequencies. The variance at zero frequency is the variance contained in the constant mean sea
level. This value is zero because we have set the mean sea level to zero.

We are usually concerned only with the variance at a given magnitude of the spatial frequency,
and not with whether the frequency is negative or positive. Nor is there any reason to plot the
point at zero frequency, which is usually zero by choice of zero for the mean sea level. It is therefore
customary to define the one-sided variance spectrum

S1s(νu) = S2s(−νu) + S2s(νu) , (2.6)

for u = 1, 2, ..., N
2 −1, and S1s(νNy) = S2s(νNy). Then only the positive frequencies are plotted. The

points connected by the solid black line in the lower-right panel of Fig. 2.1 comprise the one-sided
variance spectrum. In the present simulation, the two-sided spectrum is symmetric for positive and
negative frequencies (except for the Nyquist frequency, which does not have a negative counterpart
and is always a special case), and the one-sided function is simply twice the value of the two-sided
function for the positive frequencies, except for the Nyquist frequency. When you read a paper and
it refers to or plots “the variance (or energy) spectrum” without further comment, it is always the
one-sided spectrum. We will have to account for the magnitude difference in one- and two-sided
spectra in the next section.

There is an important detail to note in the computation and plotting of S(u), as in the lower-
right panel of Fig. 2.1. The values of S(u) were obtained by the discrete Fourier transform of
Eq. (1.14), and S(u) gives the variance contained in a finite frequency interval ∆ν = 1/L at the
discrete frequency νu. ∆ν equals the fundamental frequency and is the frequency interval used in
the calculations and the plot. As noted in the discussion of the discrete transform, S(u) is a point
function. As already seen in Eqs. (1.20) and (2.3), if we wish to convert the discrete S(u) to an
estimate of the continuous variance spectral density S(ν), we must divide by the discrete function
by the frequency interval: S(ν) = S(u)/∆ν. The units of S(ν) are then m2/(1/m), as expected
for a spectral density function of spatial frequency. I will strive to distinguish between a discrete
variance point function and a continuous variance spectral density.

19

Let us return to Eq. (2.4) and set all of the phases φ(j) to zero. We are then adding together
cosines to create the surface wave profile, which is seen in the upper left panel of Fig. 2.2. The
FFT of this profile gives the real part of ẑ(νu) as positive numbers except for the 0 frequency, and
the imaginary part is identically zero for all frequencies.

If we set all of the phases φ(j) to π/2, we are then adding together sines to create the surface
wave profile, which is seen in the upper left panel of Fig. 2.3. The FFT of this profile gives the
real part of ẑ(νu) identically zero and the imaginary part is nonzero except for the 0 and Nyquist
frequencies.

These two figures show that the real part of the complex amplitude ẑ(νu) tells us how much of
z(xr) is composed of cosine waves, and the imaginary part shows how much of z(xr) is composed
of sine waves. This explains why the imaginary part of the amplitude is zero at the Nyquist
frequency. The two-point wave at the Nyquist frequency is inherently a cosine wave because, as
noted previously, a two-point sine wave is sampled only at its zero values. The general case of a
wave component with a phase that is neither 0 (nor a multiple of 2π) nor π/2 (nor an odd integer
multiple of π/2) can be written as a sum of cosine and sine waves, as in Eq. (1.3). In that case,
both the real and imaginary parts of the amplitudes are nonzero (except for the special cases of
the 0 and Nyquist frequencies).

Note that in each of these three simulations, which differ only by the phases of the component
sinusoidal waves, the variance spectrum is exactly the same (except at the Nyquist frequency), as
seen in the lower right panels of Figs. 2.1-2.3. That is to say, the variance contained in a wave
does not depend on the reference coordinate system used to describe it, even though the Fourier
amplitudes ẑ(u) do depend on the coordinate system. The variance depends only on the amplitude
of the wave. The variance at the Nyquist frequency is largest when cosine waves are added and is
zero when sine waves are added. In the first case, we have the maximum possible amplitude of the
two-point cosine wave, and in the latter case there is no two-point wave.

2.4 Frequency Ordering

It is necessary to mention a peculiarity of all FFT subroutines. The plots above show the frequencies
ordered from negative to positive, as is convenient for plotting of two-sided spectra. Let ∆f

represent the fundamental frequency. If wavenumber ν is the frequency variable, then ∆f = 1/L.
If angular spatial frequency k is the frequency variable, then ∆f = 2π/L; for temporal angular
frequency ω, ∆f = 2π/T . In any case, the frequencies are equally spaced at intervals of ∆f and
are in the order {

−N

2
+ 1,−N

2
+ 2, ...,−1, 0, 1, ...,

N

2
− 1,

N

2

}
∆f . (2.7)

I’ll call this the “math frequency order.” With the frequencies in math order, it is convenient to
let the frequency index u run from −N

2 + 1 to N
2 , for a total of N frequencies.

However, FFT routines generally return their frequencies in the order of 0 first, then the positive
frequencies, then the negative frequencies in reverse order:{

0, 1, ...,
N

2
− 1,

N

2
,−N

2
+ 1,−N

2
+ 2, ...,−1,

}
∆f . (2.8)

20

Figure 2.2: A one-dimensional surface composed of cosine waves. Compare with Figs. 2.1 and 2.3.

I’ll call this the “FFT frequency order.” Given the Hermitian symmetry of the amplitudes about the
0 frequency, the FFT order is convenient for creating and plotting a one-sided variance spectrum,
in which case the last half of the amplitude array is ignored. With the frequencies in FFT order, it
is convenient to let the frequency index u run from 0 to N − 1, for a total of N frequencies. This
what most computer programs do when then return an array of N amplitudes corresponding to
frequencies in the FFT frequency order.

Either frequency order can be obtained from the other by a repeated circular shift, which moves
an array element off of one end of an array and copies it to the other end of the array, shifting all
elements right or left by one position in the process. The detail to watch is that different computer
languages define a circular shift in different ways. For example, the IDL routine SHIFT (and the
Matlab routine CIRCSHIFT) moves the array elements to the right for a “positive” shift (a negative
shift moves elements to the left), whereas the Fortran 95 CSHIFT routine moves the array elements
to the left for a positive shift (a negative shift moves elements to the right). Thus

21

Figure 2.3: A one-dimensional surface composed of sine waves. Compare with Figs. 2.1 and 2.2.

In IDL:

math order = SHIFT(FFT order, N/2-1)

FFT order = SHIFT(math order, -(N/2-1))

In Fortran95:

math order = CSHIFT(FFT order, -(N/2-1))

FFT order = CSHIFT(math order, N/2-1)

2.5 Variance Spectra to Surfaces

The previous section showed the major features of the Fourier analysis of a sea-surface elevation
record. We started with a sample of a sea surface and ended with the corresponding discrete variance
spectrum (or estimate of the variance spectral density after division by the frequency interval). In

22

this section we learn how to go in the reverse direction: start with a variance spectrum and generate
a random realization of the corresponding sea surface.

We will generate examples using two widely used variance spectra. The Pierson and Moskowitz
(1964) spectrum describes fully developed gravity waves. Fully developed waves are an idealization
of the sea state after the wind has been blowing for an infinitely long time over an infinite fetch. The
Elfouhaily et al. (1997) spectrum describes the full range of gravity to capillary waves, including
a parameter for the “age” of the waves, from young (the wind has just started blowing) to fully
developed seas. The mathematical formulations of these spectra are given for reference in Appendix
B.1.

2.5.1 Theory

The essence of the process is as follows:

1. Choose the domain size. To create a sea surface over a spatial domain at a given time,
we pick the length L of the region [0, L]. To generate a time series at a given point, we pick
the length of the time series.

2. Choose the number of points for the DFT. This number N is the number of frequencies
at which we will sample the variance spectrum, and equals the number of samples of the sea
surface that will be generated. In normal usage, pick N to be a power of 2 so that an inverse
FFT routine can be used to evaluate the inverse DFT.

3. Choose the frequency variable. To generate a sea surface over a spatial domain at a
given time, we can use either wavenumber ν or angular spatial frequency k. To generate a
time series at a given point, we can use either f or ω.

4. Choose a variance spectrum The variance spectrum must be expressed in terms of the
chosen frequency variable. §B.2 gives the Pierson-Moskowitz one-sided spectrum as a function
of ν, k, or ω and shows how to change variables in a density function.

5. Choose the wind speed. Pick a wind speed, and perhaps other physical parameters such
as the age of the waves to be generated if required by the chosen variance spectrum.

6. Create random Hermitian amplitudes. This is the tricky part. We must create an
array of randomized discrete Hermitian Fourier amplitudes ẑ(u), starting with the chosen
continuous variance spectrum.

7. Take the inverse DFT of the random amplitudes. The inverse DFT converts the
Fourier amplitudes to the physical wave heights.

8. Extract the sea surface heights. The inverse DFT of the complex amplitudes returns a
complex array. The real part of this array is the random realization of the sea surface heights,
and the imaginary part is zero.

9. Check your results. This is extremely important during code development. For example,
take the DFT of the generated surface heights to see if you get back to the Fourier amplitudes
and variance spectrum you started with.

23

We now proceed through these steps and discuss them in detail for a specific example.
Steps 1 and 2: Let us generate a sea surface over the region from x = 0 to x = L = 100 m.

The longest wavelength that can be resolved is then 100 m. We use N = 1024, which gives a spatial
grid resolution of ∆x = L/N = 0.0977 m. This means that the shortest wavelength that can be
resolved, the two-point wave or Nyquist wavelength, is 2∆x = 0.1954 m.

Step 3: We used wavenumber ν in the previous section because of its easy interpretation. Now
let’s use angular spatial frequency k, which is more commonly used. The fundamental frequency
is then kf = 2π/L = 0.0628 rad m−1. The highest frequency sampled, the Nyquist frequency, is
kNy = (N/2)kf = 32.15 rad m−1. Note that (2π)/kNy = 0.1954 m which, as noted above, is the
wavelength of the two-point wave.

Step 4: We for this example, we use the Pierson-Moskowitz variance spectrum in terms of
angular spatial frequency k. This is given by Eq. (B.11). Note that this is a one-sided spectrum,
which is defined for positive k values.

Step 5: The wind speed at 10 m elevation is U10 = 5 m s−1. The wind speed is the only input
to the Pierson-Moskowitz spectrum.

Step 6: We now discuss in detail how to generate a set of random discrete Fourier amplitudes
that are physically consistent with the chosen variance spectrum. These amplitudes must be defined
for both positive and negative frequencies, and the amplitudes must be Hermitian. We first define

ẑo(ku) ≡ 1√
2

[ρ(ku) + iσ(ku)]

√
S1s(k = ku)

2
∆k . (2.9)

Here S1s(k = ku) denotes the continuous spectral density S1s(k) evaluated at k = ku. ∆k = kf is the
spatial frequency sampling interval. ẑo(ku) must be defined for both positive and negative discrete
frequencies in order to create the Hermitian amplitudes for use in the inverse DFT. Recalling the
comments of the previous section, we convert the one-sided continuous spectrum S1s(k) into a
two-sided discrete variance function by

1. dividing its magnitude by 2, assuming that S2s(−k) = S2s(k);

2. multiplying the continuous spectral density by the fundamental frequency interval ∆k, which
gives the variance contained in a finite frequency interval at each frequency ku.

To emphasize the discrete vs continuous functions, and for brevity of notation, let us write the
frequency index u for the frequency ku. Then Eq. (2.9) becomes

ẑo(u) =
1√
2

[ρ(u) + iσ(u)]
√
S2s(u) , (2.10)

where S2s(u) denotes the two-sided discrete variance spectrum at frequency ku. ẑo(u) can now
be evaluated for both positive and negative ku. The 0 and Nyquist frequencies are always special
cases: set S2s(0) = 0 and S2s(kNy) = S1s(kNy). ρ(ku) ≡ ρ(u) and σ(ku) ≡ σ(u) are independent
random numbers drawn from a normal distribution with zero mean and unit variance, denoted
ρ, σ ∼ N (0, 1). A different pair is drawn for each u value.

24

ẑo(u) is a random variable. Let 〈...〉 denote the expectation of the enclosed variable. The
expected value of |ẑo(u)|2, 〈ẑo(u)ẑ∗o(u)〉, gives back whatever variance function is used for S2s(u):

〈ẑo(u)ẑ∗o(u)〉 =
〈 {

1√
2
[ρ(u) + iσ(u)]

√
S2s(u)

} {
1√
2
[ρ(u)− iσ(u)]

√
S2s(u)

} 〉
=
S2s(u)

2
[
〈ρ2〉+ 〈σ2〉

]
= S2s(u)

because 〈ρ2〉 = 〈σ2〉 = 1 for N (0, 1) random variables. Thus ẑo(u) is consistent with the chosen
variance spectrum. However, ẑo(u) is not Hermitian, so the inverse DFT would not give a real sea
surface.

Next define ẑ(u) as

ẑ(u) ≡ 1√
2

[ẑo(u) + ẑ∗o(−u)] . (2.11)

This function is clearly Hermitian, so the inverse DFT applied to ẑ(u) will give a real-valued
z(xr) ≡ z(r). Moreover, this ẑ(u) is consistent with the variance spectrum:

〈|ẑ(u)|2〉 = 〈ẑ(u)ẑ∗(u)〉

=
〈 1√

2

[
1√
2
[ρ(u) + iσ(u)]

√
S2s(u) +

1√
2
[ρ(−u)− iσ(−u)]

√
S2s(−u)

]
×

1√
2

[
1√
2
[ρ(u)− iσ(u)]

√
S2s(u) +

1√
2
[ρ(−u) + iσ(−u)]

√
S2s(−u)

]〉
=

1
4

〈 [
ρ2(u)− iρ(u)σ(u) + iσ(u)ρ(u) + σ2(u)

]
S2s(u)+

[ρ(u)ρ(−u) + iρ(u)σ(−u) + iσ(u)ρ(−u)− σ(u)σ(−u)]
√
S2s(u)

√
S2s(−u)+

[ρ(−u)ρ(u)− iρ(−u)σ(u)− iσ(−u)ρ(u)− σ(−u)σ(u)]
√
S2s(−u)

√
S2s(u)+[

ρ2(−u) + iρ(−u)σ(−u)− iσ(−u)ρ(−u) + σ2(−u)
]
S2s(−u)

〉
=

1
2
[S2s(u) + S2s(−u)] = S2s(u) .

Here we have noted that 〈ρ(u)ρ(−u)〉 = 0, etc., because the random variables are uncorrelated for
different u values.

Equations (2.9) and (2.11) are the key to generating random sea surfaces from variance spectra.
ẑ(u) defined by these equations contains random noise, which leads to a sea surface with random
amplitudes and phases for the component waves of different frequencies. Any one of these surfaces
has a variance spectrum that looks like the chosen spectrum plus random noise. However, on
average over many realizations, the the noise in these spectra will average out, leaving the variance
spectrum. Figure 2.4 below illustrates these important ideas, but first we must complete the surface
generation.

Step 7: Compute the inverse DFT of the ẑ(u) of Eq. (2.11). The result is a complex function
Z(x):

Z(xr) ≡ Z(r) = D−1{ẑ(u)} .

A crucial warning to this step is that the u = 0, ..., N − 1 elements of the ẑ(u) array must be in
the FFT frequency order given by Eq. (2.8) when using a FFT routine to evaluate the DFT. Z(r)
is returned with xr values in the order from x0 = 0 to xN−1 = (N − 1)∆x.

25

Step 8: Extract the surface. The inverse DFT returns a complex array Z(xr) whose real part
is the surface elevations z(xr) and whose imaginary part is 0. The surface elevations are extracted
as the real part of Z(xr):

z(xr) = Re{Z(xr)} .

Step 9: Check the results. There are many places along the way to lose a
√

2 or to mess up
array indexing. At the minimum, it is worthwhile to check that the mean of the generated surface
is zero, and that the imaginary part of Z(xr) = 0 (to within a small amount of numerical roundoff
error).

When developing computer code, or when first learning this material, it is also a good idea to
take the forward DFT of Z(xr) to make sure that the input Fourier amplitudes ẑ(u) are recovered,
and that the variance spectrum corresponding to z(xr) is consistent with the one chosen in Step 4.
Indeed, this check was what led to these notes.

Equations (2.9) and (2.11) are, with minor changes in notation, Eqs. (42) and (43), respectively,
of Tessendorf (2004, §4.3). However, Tessendorf’s version of Eq. (2.9) appears to use a one-sided
variance spectrum (his example used the one-sided Phillips spectrum of his Eq. (40)) without the
division by 2 seen in Eq. (2.9), which is needed to convert the one-sided spectrum to a two-sided
spectrum. Nor does he show the ∆k factor needed to convert a continuous spectral density to a
discrete function. His version of Eq. (2.11) does not contain the overall factor of 1/

√
2 seen above.

These missing factors mean that in a round-trip calculation

variance spectrum → DFT−1 → sea surface → DFT → variance spectrum ,

you do not get back to the original variance spectrum. In other words, the Tessendorf equations
do not conserve wave variance (i.e., wave energy). Even if he included the ∆k factor in his actual
computations, the missing factors of 1/

√
2 in his versions of our Eqs. (2.9) and (2.11) give an overall

factor one-half on the amplitudes, which corresponds to a factor of four error in the variance. That
is, waves generated using the Tessendorf equations have amplitudes that are too large.

Tessendorf (2004) discusses much more than just Fourier transform techniques, and his notes
have been very influential in the computer graphics industry. In 2008 he deservedly received
an Academy Award for Technical Achievement for showing the movie industry how to generate
and render sea surfaces, as well as for his many other pioneering accomplishments in efficiently
computing and rendering fluid motions into visually appealing images. (The first movie to use
his techniques was Waterworld, followed by dozens of others including Titanic.) When I checked
with him (personal communication) about the missing numerical factors, he readily acknowledged
that Eqs. (2.9) and (2.11) are the correct ones, but noted that Hollywood doesn’t care about
conservation of energy. I suppose that should be no surprise, since movies seem to have no problem
with rockets going faster than the speed of light, sound propagating through the vacuum of outer
space, or time travel that violates causality. Tessendorf’s equations are widely cited (especially in
the computer graphics literature), always without comment about the missing scale factors. You
can find many other mathematical and physical horrors in the computer graphics world. I am
therefore sadly forced to conclude that many people have created sea surfaces without checking
their calculations for internal consistency and physical correctness. That may be acceptable in a
fantasy world, but such laxness is not permissible in science. I wrote this tutorial in part to make

26

clear exactly how surfaces should be generated so that they are physically correct and suitable for
scientific work.

2.5.2 Example: A Roundtrip Calculation

Figure 2.4 shows an example of 1-D surface waves generated using the Pierson-Moskowitz spectrum
for a wind speed of 5 m/s, and the recovery of the variance spectrum from the generated surface.
The blue curve in the upper-left panel shows the Pierson-Moskowitz spectrum as defined by Eq.
(B.11). The red dots show the frequencies at which the continuous spectrum is sampled. Those
dots blur together at the higher frequencies because of the log scale, but the ku points are equally
spaced at intervals of the fundamental frequency ∆k = kf = 2π/L = 0.0628 rad/m. The last
sampled frequency is kNy = 32.17 rad/m. The bottom panel shows the sea surface elevations z(xr)
generated for a particular sequence of random numbers ρ(u), σ(u).

The red line in the upper-right panel shows the function

P(u) ≡ |ẑ(u)|2

∆k
=

1
∆k

|D{z(r)}|2 . (2.12)

P(u) is the discrete variance function for this particular z(xr) surface. Schuster (1898) called
P(u) a periodogram. The periodogram P(u) contains random noise because z(xr) is a random
realization of the sea surface, which was generated by applying random noise to the the variance
spectrum. This particular z(xr) is analogous to a particular measurement of the sea surface. Had
we drawn a difference sequence of random numbers for use in Eq. (2.10), we would have generated
a different sea surface, and a different P(u). However, we can expect that if we average together
many different P(u), corresponding to many different sets of z(xr), the noise would average out
and we would be left with a curve close to the variance spectrum we started with, which is shown in
blue. Numerical experimentation shows that averaging 100 P(u) generated from 100 independent
sea surface realizations gives an average P(u) that is almost indistinguishable from the blue curve
at the scale of this plot. Thus P(u) ≡ P(ku) is an approximation of the variance density spectrum
S(k), denoted P(ku) .= S(k). This averaging processes leads to the topic of spectrum estimation,
which considers such problems as how many sets of measurements of z(xr) are needed to estimate
the variance spectrum to within certain error bounds. Fortunately, we need not pursue that here.

At the minimum, you should always check to see that Parseval’s relation, Eq. (1.22), is satisfied.
For the simulation of Fig. 2.4, we have

N−1∑
r=0

|z(r)|2 = N

N−1∑
u=0

|ẑ(u)|2 = 19.395 m2 .

There are sometimes other checks that can be made. For example, the Pierson-Moskowitz
spectrum is simple enough that it can be analytically integrated over all frequencies. This gives

〈z2〉 =
∫ ∞

0
SPM(k)dk = 3.04 · 10−3 U4

10

g2
, (2.13)

where we have recalled that the variance spectral density is related to the variance of the sea surface.
The variance of the generated zero-mean sea surface can be computed from

var(z) =
1
N

N∑
r=0

z2(xr) (2.14)

27

Figure 2.4: Example of a 1-D random sea surface generated from the Pierson-Moskowitz spectrum
for U10 = 5 m s−1 (the wind speed at 10 m above mean sea level). The longest resolvable wave has
wavelength L = 100 m. For N = 1024, the two-point wave has wavelength 2L/N = 0.195 m. This
is already less than the smallest wavelength (highest frequency) for which the Pierson-Moskowitz
spectrum should be used.

and compared with the analytical expectation. For the surface seen in Fig. 2.4, Eq. (2.14) gives
var{z} = 0.0189 m2 vs. the theoretical value of 〈z2〉 = 0.0197 m2 from Eq. (2.13). This agreement
to within a small amount of random noise indicates that all is probably well with the calculations.
Indeed, the average var(z)± one standard deviation for 100 independent simulations is 0.020±0.007,
which agrees well with the theoretical value.

The significant wave height H1/3 is by definition the height (trough-to-crest distance) of the
highest one-third of the waves. To a good approximation, this is related to the expectation of the
variance by

H1/3 = 4
√
〈z2〉 .

In the present example, this formula gives H1/3 = 0.55 m. The average significant wave height for
100 simulations is 0.56 ± 0.09 (average ± one standard deviation). If you spend enough time in a

28

sea kayak to develop intuition about wave heights as a function of wind speed, a half-meter height
for the largest waves is about right for a 5 m s−1 or 10 knot wind speed.

To summarize this chapter: we have learned how to start with a wave variance spectral density
function and generate random discrete Fourier amplitudes. The inverse DFT of those amplitudes
gives a random realization of a sea surface that is physically consistent with the chosen variance
spectrum. That is all that we can ask of the Fourier transform technique.

2.6 Numerical Resolution

The question naturally arises: “How large a region L and how many points N must be used in
generating sea surface realizations?” Not surprisingly, the general answer is, “It depends on your
application.” It is now computationally possible to create 2-D surfaces (as described in the next
chapter) with sufficiently large N values in the x and y directions, but run times are prohibitive.
Kay et al. (2011) created 2-D surfaces with 65536×65536 points in each dimension, which sampled
the energy spectrum for wavelengths from 200 m gravity waves to 3 mm capillary waves. However,
it took 6 hours to create just one surface on a 3 GHz computer. Many ray tracing applications use
tens of thousands of surface realizations to get good statistical averages. Thus, the specific answer
for brute-force scientific calculations is usually, “A bigger N than you can run on your computer.”
This section shows how to finesse certain calculations so that large-N calculations can be avoided.

For creating visually appealing sea surfaces for rendering into a movie scene, N = 210 =
1024, 211 = 2048, or perhaps at most 212 = 4096 is usually adequate. This is because the visual
impression of a sea surface is, to first order, determined by the height of the waves, which in turn is
governed by the largest gravity waves for the given wind speed. If you are rendering an image, you
don’t need to have a finer resolution for the sea surface than maps to an image pixel. For example,
if you are going to simulate what a CCD with 1024×1024 pixels would record, and you are looking
down onto the sea surface from above at an elevation where one CCD pixel sees a 0.1 m × 0.1 m
patch of the sea surface, then you need to resolve the sea surface with a grid spacing of at most 0.1
m. Modeling a 100 m× 100 m patch of sea surface with a spatial resolution of 1024× 1024 gives a
grid spacing of 0.1 m, which would be adequate for the CCD image simulation.

Unfortunately, for accurate scientific calculations of sea surface reflectance, N may have to be
much larger. This is because the surface reflectance depends to first order on the surface wave
slope, and the slope is strongly affected by the smallest waves with spatial scales down to capillary
size of a few millimeters.

The k value of the peak of the Pierson-Moskowitz spectrum of Eq. (B.11) is easily obtained
from setting dSPM(k)/dk = 0 and solving for the value of k. This gives

kp =
(

2β

3

)0.5 g

U2
19

,

which corresponds to a wavelength of Λp = 2π/kp. Table 2.6 shows the values of kp and Λp for a
few wind speeds.

29

U19[m/s] kp [rad/m] Λp [m]
5 0.276 23
10 0.069 91
15 0.031 205
20 0.017 364

Table 2.1: Spatial frequencies and wavelengths corresponding to peak variance for the Pierson-
Moskowitz spectrum SPM(k).

If we use L ≈ 2Λp for the size of the spatial domain, we will resolve the large gravity waves, which
contain most of the wave variance. (Keep in mind that density functions do not have a unique
maximum: the location of the maximum of a density function depends on which frequency variable
is chosen. See the discussion of this on the Ocean Optics Web Book page on “A Common Miscon-
ception” at
http://www.oceanopticsbook.info/view/light_and_radiometry/level_2/a_common_misconception.
Differentiating Eq. (B.13) and using the dispersion relation ω =

√
gk leads to Λp = 2π(1.25/β)0.25g/U2

19,
which gives 73 m at U19 = 10. However, either version of Λp gives adequate guidance for our present
purpose.)

Now consider how many points it takes to almost fully resolve, or account for, the variances
of elevation and slope spectra when they are sampled in a DFT. For a specific example, we take
U10 = 10 m/s and L = 200 m. We use the omnidirectional, or 1-D, part of the Elfouhaily et al.
(1997) spectrum presented in §B.3. This S(k) is given by Eq. (B.16) and the associated equations.
This variance spectrum and the corresponding slope spectrum k2S(k) are plotted as the green
curves in Fig. B.3, and again by the blue curves in the next 3 figures.

As we have learned (c.g. §2.2 and B.1), the expected variance of the sea surface is given by

〈z2〉 =
∫ ∞

0
S(k) dk , (2.15)

and the mean-square slope is given by

〈σ2〉 = mss =
∫ ∞

0
k2 S(k) dk . (2.16)

Such integrals usually must be numerically evaluated with the limits of k = 0 and ∞ being replaced
by some small value k0 and some large but finite value k∞. In the present case, I used k0 = 0.01 and
k∞ = 104, with 106 evaluation points in between these limits. That gives an accurate evaluation
of Eqs. (2.15) and (2.16) for the U10 = 10 m s−1 spectra. The results are 〈z2〉 = 0.4296 m2 and
mss = 0.06011 rad2.

Now suppose we sample the spectrum using N = 1024 points, which leads eventually to a
sea surface realization z(xr) with 1024 points. For L = 200 m the fundamental frequency is
kf = 2π/L = 0.0314 rad/m. This point is shown by the left-most red dot with the black center in
Fig. 2.5. For this L and N , the Nyquist frequency is kNy = 2π/(2L/N) = 16.085 rad/m, which is
shows by the right-most black and red dot. These two end points and the N − 2 red vertical lines
in between show the discrete points where the variance spectrum is sampled.

30

http://www.oceanopticsbook.info/view/light_and_radiometry/level_2/a_common_misconception

The elevation and slope variances that are accounted for in a sampling scheme with N points
are given by

z2(N) =
∫ kNy

kf

S(k) dk ,

and

mss(N) =
∫ kNy

kf

k2 S(k) dk .

In the present example, these integrals are z2(N = 1024) = 0.4219 m2 and mss(N = 1024) =
0.02584 rad2. Thus the finite range of the sampled frequencies includes the fraction

fE ≡ z2(N)
〈z2〉

=
0.4219
0.4296

= 0.982

of the total variance of the sea surface elevation. However, the corresponding fraction of the
sampled slope variance is just fS = 0.02584/0.06011 = 0.430. Thus N = 1024 is sampling 98% of
the elevation variance but only 43% of the slope variance. This sampling is acceptable if we are
interested only in creating a sea surface that looks realistic to the eye. The large gravity waves will
be correctly simulated, and that is what counts for visual appearance.

However, if our interest is ray tracing to simulate the optical reflectance and transmission
properties of the sea surface, then we must also sample almost all of the slope variance. This is
because, to first order, reflectance and transmission of light are governed by the slope of the sea
surface, not by its height. As will be seen in §3.5, if we under sample the slope varaince, then
the generated surface will be too smooth at the smallest spatial scales, and the computed optical
properties will be incorrect. The brute-force approach to sampling more of the slope spectrum is
to increase N .

Figure 2.6 shows the sampling points when N = 216 = 65536. Now the sampled points extend
into the capillary-wave spatial scale: the smallest resolvable wave is 0.006 m. (Note that the
fundamental frequency is fixed by the choice of L, which also fixes the spacing of the samples,
∆k = kf .) The elevation variance integral over the sampled ranges is unchanged (we are still
missing a small bit of the variance from the very longest waves with frequencies below kf . However,
the slope integral is now mss(N = 65536) = 0.05909 rad2. Thus we are now sampling a fraction
fS = 0.05909/0.06011 = 0.983 of the slope variance. The resolution of both the elevation and
slope spectra are now acceptable for almost any application. Although using a very large N is
computationally feasible in one dimension, such a large N is computationally impracticable in two
dimensions, when we would need a grid of size N ×N . In the present example, this would would
require 655362 = 4.3 Gbytes of storage for just one real array, as well as a corresponding increase
in run time for the FFT. Another approach to resolving the slope variance is therefore needed.

As we have seen, the unsampled frequencies greater than the Nyquist frequency can account for
a large part of the slope variance. These frequencies represent the smallest gravity and capillary
waves. The amplitudes of these waves are small, so they contribute little to the total wave variance,
but their slopes can be large. One way to account for these “missing” waves is to alias their variance
into the waves of the highest frequencies. The highest frequency waves that are sampled will then
contain too much variance, i.e., they will have amplitudes that are too large for their wavelengths,
which will increase their slopes. One way to do this is as follows.

31

Figure 2.5: Example sampling of elevation and slope spectra for N = 1024. The red dots and
lines show the regions of the elevation and slope spectra sampled using 1024 points. The elevation
spectrum is adequately sampled, but the slope spectrum is under sampled.

Figure 2.6: Example sampling of elevation and slope spectra for N = 65536. The red dots and
lines show the sampled regions of the elevation and slope spectra. Both the elevation and the slope
spectra are adequately sampled.

32

We seek an adjusted or re-scaled elevation spectrum

S̃(k) ≡ [1 + δ(k)]S(k) (2.17)

such that the integral of k2S̃(k) over the sampled region equals the integral of the true k2S(k) over
the full spectral range. Then sampling the re-scaled spectrum S̃(k) will lead to the same slope
variance as would be obtained from sampling the correct spectrum S(k) over the entire range of
frequencies.

We can choose L so that the low frequencies are well sampled starting at the fundamental
frequency kf = 2π/L. There is thus no need to modify the low-frequency part of the variance
spectrum, which if done, would adversely affect the total wave variance. We want to modify only
the higher frequencies of the sampled region, which contribute the most to the wave slope but little
to the wave elevation. A simple approach is to take δ(k) to be a linear function of k between the
spectrum peak kp and the highest sampled frequency kNy, and zero elsewhere:

δ(k) ≡

 0 if k ≤ kp

δNy

(
k−kp

kNy−kp

)
if k > kp

(2.18)

δNy is a parameter that depends on the spectrum (i.e., the wind speed), the size L of the spatial
domain, and the number of samples N . We must determine the value of δNy so that this δ(k) “adds
back in” the unresolved slope variance. The added variance will be zero at the peak frequency kp

and largest at the Nyquist frequency. That is, the δ(k) function will make only a small change to the
variance spectrum at the low frequencies, and the change will be largest near the highest sampled
frequencies, which is consistent with the idea that the high frequency waves have the largest slopes.
(There is nothing physical about the functional form of Eq. (2.18); it is simply a single-parameter
ad hoc function that works well in practice. Nonlinear functions could be used, e.g. to concentrate
more of the variance into the frequencies closest to the Nyquist frequency. However, those functions
could have more than one free parameter to determine and, in any case, the end result is the same:
a sea surface that reproduces the height and slope variances of the fully sampled spectrum.)

To determine δNy we thus have

mss =
∫ ∞

0
k2 S(k) dk ≈

∫ k∞

k0

k2 S(k) dk =
∫ kNy

k0

k2 S(k) dk +
∫ k∞

kNy

k2 S(k) dk

≡
∫ kNy

k0

k2 S̃(k) dk =
∫ kNy

k0

k2 S(k) dk + δNy

∫ kNy

kp

k2

(
k − kp

kNy − kp

)
S(k) dk .

The right-most terms of these equations give (after recalling that δ(k) = 0 for k ≤ kp)

δNy =

∫ k∞
kNy

k2 S(k) dk∫ kNy

kp
k2

(
k−kp

kNy−kp

)
S(k) dk

. (2.19)

Figure 2.7 shows example 1-D surface realizations created with N = 1024 samples and both
the true and scaled variance spectra. The upper two panels reproduce Fig. 2.5, except that the
sampled points of the re-scaled spectra are shown in green. It is clear that the δ(k) function has
added progressively more variance to the higher frequencies. The re-scaled variance spectrum does

33

of course contain somewhat more variance over the sampled region than does the true spectrum.
As the green inset fE number shows, this re-scaling has increased the fraction of sampled/true
variance from 0.982 to 1.020. However, the fS number in the upper-right panel shows that we are
now sampling 99.5% of the slope variance, as opposed to 43% for the true spectrum. Having a bit
too much total elevation variance seems to be a good tradeoff for being able to model the optically
important slope statistics.

The row 2 panel shows random realizations of the 1-D surfaces generated from these two spectra
(with the same set of random numbers). The surface elevations z(xr) from the true spectrum (red
line) and the re-scaled spectrum (green line) are almost indistinguishable at the scale of this figure.
These significant wave heights for these two surface realizations compare well with the significant
wave height of H1/3 = 2.48 m for a Pierson-Moskowitz spectrum. The row 3 panel shows the surface
slopes computed from finite differences of the discrete surface heights. The Cox-Munk along-wind
mean square slope is given by mssx = 0.0316U12.5, which compares well with the value of 0.032
obtained with the re-scaled spectrum. However, the value obtained from the true spectrum is only
0.022, or 70% of the Cox-Munk value. The bottom two panels replot the 0-10 m sections of the z

and dz/dx figures for better display of the details.
We thus see that when using the δ(k) correction to a variance spectrum, we can generate a

surface that reproduces, to within a few percent of the theoretical values, both the surface elevation
and slope statistics that would be obtained from the underlying true variance spectrum if it were
sampled with enough points to fully resolve the elevation and slope variances.

34

Figure 2.7: Example 1-D surfaces and slopes created using true and adjusted variance spectra. See
the text for discussion.

35

CHAPTER 3

Two-Dimensional, Time-Independent Surfaces

We have now had a detailed look at the one-dimensional case. The extension to two dimensions is
mathematically straight forward.

Let z(x, t) = z(x, y, t) be the sea surface elevation in meters at point x = (x, y) at time t. The
spatial extent of the sea surface is 0 ≤ x < Lx and 0 ≤ y < Ly. This surface is sampled on a
rectangular grid of Nx by Ny points, where both Nx and Ny are powers of 2 for the FFT. The
spatial sampling points are then

x(r) = [0, 1, 2, ..., Nx − 1]
Lx

Nx
= r∆x, r = 0, ..., Nx − 1

y(s) = [0, 1, 2, ..., Ny − 1]
Ly

Ny
= s∆y, s = 0, ..., Ny − 1 .

This spatial sampling frequency gives Nx and Ny spatial frequencies kx and ky (in math frequency
order)

kx(u) = [−(Nx/2− 1), ...,−1, 0, 1, ..., Nx/2]
2π

Lx
= u∆kx, u = −(Nx/2− 1), ..., Nx/2

ky(v) = [−(Ny/2− 1), ...,−1, 0, 1, ..., Ny/2]
2π

Ly
= v∆ky, v = −(Ny/2− 1), ..., Ny/2

.

As before, the x-dimension 0 frequency is at array element u = Nx/2−1 and the Nyquist frequency
is at element u = Nx − 1. Thus the positive and negative pairs of kx values are related by
kx(u) = −kx(Nx − 2− u), u = 0, ..., Nx − 2, with the Nyquist frequency always being a special case
because there is only a positive Nyquist frequency. Corresponding relations hold for the y direction.

Let k = (kx, ky) denote a spatial frequency vector, where kx and ky are frequencies in the x

and y directions, respectively. For discrete values, we write kuv = (kx(u), ky(v)). The magnitude

of k is k =
√

k2
x + k2

y. In our (x, y) coordinate system, let the wind blow in the +x direction.
The −x direction is then upwind, and the ±y directions are the cross-wind directions. With this
choice, kx > 0 indicates frequencies of waves propagating more or less downwind, and kx < 0 for
waves propagating against the wind. kx = 0 and ky 6= 0 indicates a wave propagating at exactly a

36

cross-wind ±y direction. The angle of wave propagation relative to the downwind direction for a
wave of frequency (kx(u), ky(v)) is given by

ϕ(kuv) = ϕ(u, v) = tan−1

[
ky(v)
kx(u)

]
. (3.1)

We can thus write the 2-D surface as z(x), its Fourier amplitude as ẑ(k), and the associated variance
spectrum as Ψ(k). The discrete variance spectrum Ψ(kuv) = Ψ(u, v) gives the variance of the wave
with wavelength 2π/kuv propagating in direction ϕ(kuv) relative to the downwind direction. See
§B.1 for discussion of two-dimensional variance spectra.

3.1 Surfaces to Variance Spectra

Even though the mathematical transition from one to two dimensions causes no problems, it is
again educational to take a careful look at a couple of contrived examples.

3.1.1 Example: A Random Sea Surface

For the first example, a sea surface area of size Lx×Ly = 10× 10 m is sampled using Nx = 16 and
Ny = 8 points in the x and y directions. Sea surface elevations z(x, y) were created by drawing a
N (0, 1) random number at each (x, y) value.

The upper-left panel of Fig. 3.1 shows a contour plot of this surface for a particular sequence
of random numbers. The spatial periodicity of the Fourier representation is used to extend the
contour plot to the full (Lx, Ly) range of the tile, which gives a good visual appearance. Thus the
elevations at x = Lx are the same as those at x = 0, those at y = Ly equal those at y = 0, and the
elevation at (Lx, Ly) duplicates the elevation at (0, 0). The Nx×Ny grid of sample points is shown
by the solid silver dots. The points at x = Lx and y = Ly obtained by periodicity are shown by
open silver circles at the right and top of the surface plot.

The Fourier amplitudes ẑ(kuv) = ẑ(kx(u), ky(v)) are obtained from the 2-D DFT of z(xrs) =
z(x(r), y(s)):

ẑ(kuv) = D{z(xrs)} .

The usual warning on FFT frequency order applies here. The 2-D FFT gives back the amplitudes
ẑ(kuv) with the array elements corresponding the the FFT frequency order of Eq. (2.8). Before
plotting, the ẑ(kuv) array elements must be shifted into the math frequency order in both the kx

and ky array directions using the appropriate shift function for the computer language used in the
plotting. For the IDL routine used to generate Fig. 3.1, the 2-D circular shift is given by the IDL
command

realzhatplot = SHIFT(REAL PART(zhat),Nx/2− 1,Ny/2− 1)

where zhat is the complex 2-D array returned by the FFT routine, and realzhatplot is the 2-D
array plotted in the upper right panel of Fig. 3.1.

The upper right panel of Fig. 3.1 plots the real part of ẑ(kuv), and the lower left panel plots
the imaginary part. The Nyquist frequency kNy

x = 2π/(2∆x) = 5.03 rad/m lies along the right
side of the contour plot. The Nyquist frequency kNy

y = 2π/(2∆y) = 2.51 rad/m lies along the
top of the contour plot. The white space at the left and bottom highlights that there are no

37

Figure 3.1: A two-dimensional random sea surface and its Fourier transform and two-sided variance
spectrum. The surface elevations in the upper left panel were randomly drawn from a N (0, 1)
distribution. The black arrows highlight a particular ±kuv frequency pair. The blue-blue and
red-red symmetry of the real part of the Fourier amplitudes, and the red-blue symmetry of the
imaginary part, shows the Hermitian nature of the amplitudes. The gray dots show the locations
of the discrete values that were contoured to create the figures.

38

negative Nyquist frequencies. In each amplitude plot a particular pair of ±kuv values is indicated
by the black arrows; the (0, 0) frequency is shown by a black dot. Note that in the plot of the real
part, Re{ẑ(−kuv)} = Re{ẑ(+kuv)}, whereas in the plot of the imaginary part, Im{ẑ(−kuv)} =
−Im{ẑ(+kuv)}. The contouring is rather low quality for so few points, but it is easy to see in
the digital output that when the kx is the Nyquist frequency (the points along the right column
of points in the plot), the symmetries are given by Re{ẑ(kNy

x ,−ky)} = Re{ẑ(kNy
x ,+ky)} and

Im{ẑ(kNy
x ,−ky)} = −Im{ẑ(kNy

x ,+ky)}. A corresponding relation holds for ±kx when ky = kNy
y

(the points along the top row of the plot). The point at the upper right of the plot corresponds
to both kx and ky being at their respective Nyquist frequencies. As always, the array elements at
the Nyquist frequencies must be treated as special cases when writing computer programs. These
symmetries show that the 2-D amplitudes are Hermitian: ẑ∗(−kuv) = ẑ(kuv). The discrete 2-D
variance spectrum Ψ(kuv) = Ψ(u, v) = ẑ(u, v)ẑ∗(u, v) is contoured in the lower right panel of the
figure. Note the Ψ(−kuv) = Ψ(kuv) symmetry.

For this example, the standard check on Parseval’s relation (1.23) gives

Nx−1∑
r=0

Ny−1∑
s=0

|z(r, s)|2 = NxNy

Nx−1∑
u=0

Ny−1∑
v=0

|ẑ(u, v)|2 = NxNy

Nx−1∑
u=0

Ny−1∑
v=0

Ψ(u, v) = 130.90 m2 .

In all of these plots, it should be remembered that the discrete values are known only at the
locations of the silver dots. The contouring routine simply interpolates between these points to
create a visually appealing figure. The continuous color in the plots does not imply that the values
are continuous and known in between the discrete points.

3.1.2 Example: A Sea Surface of Crossing Sinusoids

For a second example, let us define a surface from a pair of crossing sinusoids as follows:

z(xr, ys) = A1 cos(kx1xr + ky1ys + φ1) + A2 cos(kx2xr + ky2ys + φ2) , (3.2)

where as usual r = 0, ..., Nx − 1; s = 0, ..., Ny − 1; and where

A1 = 1.0 m is the amplitude of the first wave

Nx1 = 2 is the number of wave lengths in the x direction in [0, Lx] for the first wave

kx1 = 2.0πNx1/Lx = 1.257 rad/m2 is the kx frequency of the first wave

Ny1 = 1 is the number of wave lengths in the y direction in [0, Ly] for the first wave

ky1 = 2.0πNy1/Ly = 0.628 rad/m2 is the ky frequency of the first wave

φ1 = 0 is the phase of the first wave; 0 gives a cosine wave

A2 = 0.5 m is the amplitude of the second wave

Nx2 = 4 is the number of wave lengths in the x direction in [0, Lx] for the second wave

kx2 = 2.0πNx2/Lx = 2.513 rad/m2 is the kx frequency of the second wave

Ny2 = 3 is the number of wave lengths in the y direction in [0, Ly] for the second wave

ky2 = −2.0πNy2/Ly = −1.885 rad/m2 is the ky frequency of the first wave

39

φ2 = π/2 is the phase of the second wave; π/2 gives a sine wave

The wavelength of the first wave is Λ1 = 2π/
√

k2
x1 + k2

y1 = 4.47 m, and that of the second wave is
Λ2 = 2.00 m. The direction of propagation of the first wave relative to the +x axis is

ϕ1 = tan−1

(
ky1

kx1

)
= 26.57 deg ,

and the direction of propagation of the second wave relative to the +x axis is

ϕ2 = tan−1

(
ky2

kx2

)
= −36.87 deg .

The upper left panel of Fig. 3.2 shows this surface elevation pattern when Eq. (3.2) is sampled
with Nx = Ny = 16. The dominant red-blue pattern shows the first wave oriented with the
direction of propagation along either the +k1 direction at ϕ1 = 26.57 deg or the −k1 direction at
ϕ1 = 26.57 + 180 = 206.57 deg. We cannot of course determine the actual direction +k1 or −k1 of
propagation from sea surface elevations at a single time. The dominant wave pattern is modulated
by the second wave, which has one half the amplitude of the first wave.

The choice above of φ1 = 0 in Eq. (3.2) makes the dominate wave a cosine in our coordinate
system, and φ2 = π/2 makes the second wave a sine. As we saw in the 1-D examples, variance
associated with cosine waves appears in the real part of the Fourier amplitudes, and the variance in
sine waves appears in the imaginary parts. We see this again here for the first (cosine) and second
(sine) waves of the surface. Since each wave pattern has only one frequency, there is only one pair
of points at ±k1 in the plot of the real part, and one pair at ±k2 in the plot of the imaginary part.
The amplitudes at all other frequencies are zero. The symmetries of these points again show the
Hermitian nature of the amplitudes.

The lower right panel shows the two-sided variance function Ψ2s(k) for this surface. Note that
the first wave has four times the variance of the second wave because the amplitude of the first
wave is twice that of the second wave. Ψ2s(−k) = Ψ2s(+k). Note also that you can look at a 2-D
variance spectrum and see how much energy is propagating in a given ±k direction.

For this simple example involving just four frequencies it is easy (from the digital output) to
hand check that the right-hand side of Parseval’s relation (1.23) is

NxNy

∑
u

∑
v

|ẑ(u, v)|2 = 16 · 16
[
(0.5)2 + (0.5)2 + (0.25)2 + (−0.25)2

]
= 160 m2 .

This value agrees exactly with the corresponding sums of the surface elevations,
∑

r

∑
s[z(r, s)]2,

and variance values, NxNy
∑

u

∑
v Ψ(u, v).

40

Figure 3.2: A two-dimensional sea surface composed of two crossing sinusoids, and the resulting
Fourier amplitudes and variance.

41

3.2 Variance Spectra to Surfaces

Now, again, we face the reverse process: start with a two-dimensional, one-sided variance density
spectrum and generate a random 2-D realization of a sea surface. The first task is to conjure up a
two-dimensional variance density spectrum, which requires some effort.

3.2.1 Theory

Let Ψ(k) = Ψ(kx, ky) denote a 2-D elevation variance spectrum. This spectrum has units of
m2/(rad/m)2. By definition, the integral of Ψ(kx, ky) over all frequencies gives the elevation vari-
ance:

var{z} = 〈z2〉 =
∫ ∞

−∞

∫ ∞

−∞
Ψ(kx, ky) dkx dky .

(See §B.1 for the precise definition of Ψ(kx, ky) and for further details.) As in the 1-D case of §2.5,
〈 〉 indicates expectation or ensemble average over many measurements of the sea surface.

In the discrete case, the kuv values coming out of ẑ = D{z} point both “downwind” (positive
kx(u) values) and “upwind” (negative kx(u) values), i.e. there are both positive and negative
frequencies represented in the “two-sided” variance spectrum, denoted as Ψ2s[u, v], u = −(Nx/2−
1), ..., Ny/2, v = −(Ny/2− 1), ..., Ny/2 as above. In general, Ψ2s(−kuv) 6= Ψ2s(+kuv) because more
energy propagates downwind than upwind at a given frequency. kx(Nx/2) is the Nyquist frequency
for waves propagating in the x direction; ky(Ny/2) is the Nyquist frequency for waves propagating
in the y direction. Ψ2s(0, 0) is the variance at zero frequencies, i.e., the variance of the mean sea
surface; this term is normally set to 0 so that the mean sea surface is at height 0.

The 2-D equivalents of Eqs. (2.9) and (2.10) are

ẑo(kuv) ≡
1√
2
[ρ(kuv) + iσ(kuv)]

√
Ψ1s(k = kuv)

2
∆kx∆ky

=
1√
2
[ρ(kuv) + iσ(kuv)]

√
Ψ2s(kuv) .) (3.3)

Here, as before, ρ(kuv) and σ(kuv) are independent N (0, 1) random variables, with a different
random variable drawn for each kuv value. As in the 1-D case, the expected value of ẑo(kuv) gives
back whatever variance spectrum is used for Ψ2s(kuv), but is not Hermitian. As before, the notation
of Eq. (3.3) distinguishes between the value of the continuous spectral density function evaluated
at a discrete frequency value, Ψ1s(k = kuv), and the discrete variance point function, Ψ2s(kuv).

We must define random Hermitian amplitudes for use in the inverse Fourier transform. Looking
ahead to the next chapter, which extends the results of this chapter to time-dependent surfaces,
define the time-dependent spectral amplitude

ẑ(kuv, t) ≡
1√
2

[
ẑo(kuv)e−iωuvt + ẑ∗o(−kuv)e+iωuvt

]
. (3.4)

This function is clearly Hermitian, so the inverse DFT applied to ẑ(kuv, t) will give a real-valued
z(xrs, t). Recall from Eq. (1.1) that a function of the form cos(kx−ωt) gives a wave propagating in
the +x direction. The corresponding ẑo(kuv)e−iωt in this equation gives a wave propagating in the
+k direction, which is in the downwind half plane of all directions. In general the temporal angular

42

frequency ωuv is a function of the spatial frequency kuv. For example, for deep-water gravity waves,
ω2

uv = gkuv.
For simplicity of notation, let us momentarily drop the rs and uv subscripts on the discrete

variables. The ẑ(k, t) of Eq. (3.4) is also consistent with the variance spectrum:

〈|ẑ(k, t)|2〉 = 〈ẑ(k, t)ẑ∗(k, t)〉

=
〈 1√

2

[
1√
2
[ρ(k) + iσ(k)]

√
Ψ2s(k)eiωt +

1√
2
[ρ(−k)− iσ(−k)]

√
Ψ2s(−k)e−iωt

]
×

1√
2

[
1√
2
[ρ(k)− iσ(k)]

√
Ψ2s(k)e−iωt +

1√
2
[ρ(−k) + iσ(−k)]

√
Ψ2s(−k)eiωt

]〉
=

1
4

〈 [
ρ2(k)− iρ(k)σ(k) + iσ(k)ρ(k) + σ2(k)

]
Ψ2s(k)+

[ρ(k)ρ(−k) + iρ(k)σ(−k) + iσ(k)ρ(−k)− σ(k)σ(−k)]
√

Ψ2s(k)
√

Ψ2s(−k)ei2ωt+

[ρ(−k)ρ(k)− iρ(−k)σ(k)− iσ(−k)ρ(k)− σ(−k)σ(k)]
√

Ψ2s(−k)
√

Ψ2s(k)e−i2ωt+[
ρ2(−k) + iρ(−k)σ(−k)− iσ(−k)ρ(−k) + σ2(−k)

]
Ψ2s(−k)

〉
=

1
2
[Ψ2s(k) + Ψ2s(−k)] .

Here we have noted that all terms like 〈ρ(k)ρ(−k)〉 are zero because of the independence of the
random variables for different k values, as are terms like 〈ρ(k)σ(k)〉. The remaining term is the
total variance associated with waves propagating in the downwind and upwind directions at the
spatial frequency of magnitude k. It should be noted that this term is independent of time even
though the waves z(x, y, t) depend on time. This is because the total variance (or energy) of the
wave field is the same at all times, even though the exact shape of the sea surface varies with time.

If only a ‘snapshot’ of the sea surface at one time is available, it is not possible to resolve how
much of the total variance is associated with waves propagating in direction k compared to the
opposite direction −k. The forward DFT, ẑ(k, t) = D{z(x, y, t)}, and ẑ(k, t)ẑ∗(k, t) then gives
Ψ2s(−k) = Ψ2s(k), in which case the last equation reduces to

〈ẑ(k, t)ẑ∗(k, t)〉 = Ψ2s(k) .

In any case, the amplitudes defined by Eq. (3.4) are Hermitian, so that the real part of the
inverse Fourier transform Z(x, t) = D−1{ẑ(k, t)} gives a real-valued sea surface z(x, t). That sea
surface is consistent with the variance spectrum Ψ2s(k) at every time t. Wave variance (energy)
is thus conserved in a “round-trip” calculation from variance spectrum to sea surface and back to
variance spectrum. In the time-dependent case, if Ψ2s(k) > Ψ2s(−k), then more variance will be
contained in waves propagating in the +k direction than in the −k direction. This is all that we
can ask from Fourier transform techniques.

Although Eqs. (3.3) and (3.4) are compact representations of the random spectral amplitudes,
the actual evaluation of these equations in a computer program warrants further examination. In
particular, the Nyquist frequencies are always special cases because there is only a positive Nyquist
frequency, kNy

x = Nx
2

2π
Lx

at array element Nx − 1, with a corresponding equation for the Nyquist

43

frequency in the y direction. Writing e±iωt = cos[ω(k)t]± i sin[ω(k)t] and expanding Eq. (3.4) gives

2 ẑ(k, t) =
[
ρ(k)

√
Ψ2s(k) + ρ(−k)

√
Ψ2s(−k)

]
cos[ω(k)t]

−
[
σ(k)

√
Ψ2s(k) + σ(−k)

√
Ψ2s(−k)

]
sin[ω(k)t]

+ i

{[
ρ(k)

√
Ψ2s(k)− ρ(−k)

√
Ψ2s(−k)

]
sin[ω(k)t]

+
[
σ(k)

√
Ψ2s(k)− σ(−k)

√
Ψ2s(−k)

]
cos[ω(k)t]

}
. (3.5)

These terms are all Nx ×Ny arrays, but note that terms like ρ(k)
√

Ψ2s(k) represent element-by-
element multiplications, not matrix multiplications.

For a particular array element ẑ(kx(u), ky(v), t) = ẑ(u, v, t), and using the previously noted
indexing relation k(u) = −k(N − 2− u), u = 0, ..., N − 2 for frequencies written in math order, we
can write

2 ẑ(u, v, t)

=
[
ρ(u, v)

√
Ψ2s(u, v) + ρ(Nx− 2− u, Ny− 2− v)

√
Ψ2s(Nx− 2− u, Ny− 2− v)

]
cos[ω(k(u, v))t]

−
[
σ(u, v)

√
Ψ2s(u, v) + σ(Nx− 2− u, Ny− 2− v)

√
Ψ2s(Nx− 2− u, Ny− 2− v)

]
sin[ω(k(u, v))t]

+ i

{[
ρ(u, v)

√
Ψ2s(u, v)− ρ(Nx− 2− u, Ny− 2− v)

√
Ψ2s(Nx− 2− u, Ny− 2− v)

]
sin[ω(k(u, v))t]

+
[
σ(u, v)

√
Ψ2s(u, v)− σ(Nx− 2− u, Ny− 2− v)

√
Ψ2s(Nx− 2− u, Ny− 2− v)

]
cos[ω(k(u, v))t]

}
.

(3.6)

This equation allows for efficient computation within loops over array elements. In particular,
the code can loop over the non-positive kx(u) values, u = 0, ..., Nx/2, and over all ky(v) values,
v = 0, ..., Ny − 2 to evaluate the amplitudes for all non-Nyquist frequencies. The positive kx(u)
values are then obtained from the negative kx(u) values by Hermitian symmetry. The Nyquist
frequencies are evaluated by an equation of the same form, but with one or the other index held
fixed (e.g., u = Nx − 1 while v = 0, ..., Ny − 2). The amplitude ẑ(kx = 0, ky = 0) at array element
(u, v) = (Nx/2− 1, Ny/2− 1) is usually set to zero, corresponding to the mean sea level being set
to 0. For generation of time-independent surfaces, we can set t = 0 so that the cosines are one and
the sines are zero, which cuts the number of terms to be evaluated in half.

If the frequencies are in the FFT order, then the last equation has the same general form, but
the indexing that expresses Hermitian symmetry is different: k(u) = −k(N − u), u = 1, ..., N − 1,

44

with k = 0 being a special case. The equation corresponding to Eq. (3.6) is then

2 ẑ(u, v, t)

=
[
ρ(u, v)

√
Ψ2s(u, v) + ρ(Nx− u, Ny− v)

√
Ψ2s(Nx− u, Ny− v)

]
cos[ω(k(u, v))t]

−
[
σ(u, v)

√
Ψ2s(u, v) + σ(Nx− u, Ny− v)

√
Ψ2s(Nx− u, Ny− v)

]
sin[ω(k(u, v))t]

+ i

{[
ρ(u, v)

√
Ψ2s(u, v)− ρ(Nx− u, Ny− v)

√
Ψ2s(Nx− u, Ny− v)

]
sin[ω(k(u, v))t]

+
[
σ(u, v)

√
Ψ2s(u, v)− σ(Nx− u, Ny− v)

√
Ψ2s(Nx− u, Ny− v)

]
cos[ω(k(u, v))t]

}
. (3.7)

However, this equation does not explicitly show the special cases. Let zhat[u,v] be the array of
ẑ(k, t) = ẑ(kx(u), ky(v), t) values at a particular time t. r[u,v] and s[u,v] are the arrays of random
numbers ρ(u, v) and σ(u, v), respectively. Psiroot[u,v] is 1

2

√
Ψ2s(kx(u), ky(v)) (incorporating the 2

seen on the left-hand side of Eq. (3.7)). With other obvious definitions, the pseudo code to evaluate
Eq. (3.7) at a particular time t is as follows:

(1) Loop over the non-zero frequencies:

LOOP OVER u=1,Nx-1

LOOP OVER v=1,Ny-1

zhat[u,v] = COMPLEX(

(r[u,v]*Psiroot[u,v]

+ r[Nx-u,Ny-v]*Psiroot[Nx-u,Ny-v])*cosomegat[u,v]

- (s[u,v]*Psiroot[u,v]

+ s[Nx-u,Ny-v]*Psiroot[Nx-u,Ny-v])*sinomegat[u,v] ,

(r[u,v]*Psiroot[u,v]

- r[Nx-u,Ny-v]*Psiroot[Nx-u,Ny-v])*sinomegat[u,v]

+ (s[u,v]*Psiroot[u,v]

- s[Nx-u,Ny-v]*Psiroot[Nx-u,Ny-v])*cosomegat[u,v])

END v LOOP

END u LOOP

(2) Loop over all ky values for the special case of kx = 0 at frequency array index u = 0. Note that
for kx = 0, the ±ky values are complex conjugates.

LOOP OVER v=1,Ny/2

zhat(0,v) = COMPLEX(

(r(0,v)*Psiroot[0,v]

+ r[0,Ny-v]*Psiroot[0,Ny-v])*cosomegat[0,v]

- (s[0,v]*Psiroot[u,v]

+ s[0,Ny-v]*Psiroot[0,Ny-v])*sinomegat[0,v] ,

(r[0,v]*Psiroot[u,v]

45

- r[0,Ny-v]*Psiroot[0,Ny-v])*sinomegat[0,v]

+ (s[0,v]*Psiroot[u,v]

- s[0,Ny-v]*Psiroot[0,Ny-v])*cosomegat[0,v])

zhat(0,Ny-v) = CONJ(zhat(0,v))

END u LOOP

(3) Loop over all kx values for the special cases of ky = 0 at frequency array index v = 0. Note
that for ky = 0, the ±kx values are complex conjugates.

LOOP OVER u=1,Nx/2

zhat(u,0) = COMPLEX(

(r(u,0)*Psiroot[u,0]

+ r[Nx-u,0]*Psiroot[Nx-u,0])*cosomegat[u,0]

- (s[u,0]*Psiroot[u,0]

+ s[Nx-u,0]*Psiroot[Nx-u,0])*sinomegat[u,0] ,

(r[u,0]*Psiroot[u,0]

- r[Nx-u,0]*Psiroot[Nx-u,0])*sinomegat[u,0]

+ (s[u,0]*Psiroot[u,0]

- s[Nx-u,0]*Psiroot[Nx-u,0])*cosomegat[u,0])

zhat(Nx-u,0) = CONJ(zhat(u,0))

END v LOOP

(4) Finally, set the (kx, ky) = (0, 0) value to 0, which sets the mean sea level to zero:

zhat[0,0] = COMPLEX(0.0, 0.0)

Array zhat[u,v] = ẑ(kx(u), ky(v)) as just defined is Hermitian and has the frequencies in FFT order
ready for input to an FFT routine.

3.2.2 Example: A Two-Dimensional Sea Surface

As an example, let us use a course grid sampling of Nx × Ny = 64 × 64 points, which makes
it easier to see certain features in the associated plots. The physical region to be simulated is
Lx × Ly = 100 × 100 m. The two-dimensional, one-sided variance spectrum of Elfouhaily et al.
(1997) is used; the defining equations are given in §B.3.

The upper left plot of Fig. 3.3 shows this spectrum for a wind speed of 5 m s−1 and a fully
developed sea state. The contours are of Ψ1s(kx, ky) evaluated at the discrete grid points; the
1
2∆kx∆ky factor seen in Eq. (3.3) has not yet been applied to create a discrete two-sided spectrum.
The line along ky = 0 corresponds to the spectrum plotted in Fig. B.3. We see in both plots that
for a 5 m s−1 wind, the spectrum peaks near 0.2− 0.3 rad/m.

The plots of the real and imaginary parts of ẑ(kx(u), ky(v)) show that most of the variance is at
low frequencies and that the amplitudes have the Hermitian symmetry illustrated previously in Figs.
3.1 and 3.2. The lower right panel of the plot shows a contour plot of the sea surface generated from
the inverse FFT of the amplitudes. The significant wave height for this surface realization is 0.60
m, in good agreement with the expected value given above for the Pierson-Moskowitz spectrum,
which is similar to the Elfouhaily et al. (1997) spectrum in the gravity wave region.

46

Figure 3.3: Example two-dimensional sea surface generated from a 2-D, one-sided variance spec-
trum. The resolution is only 64 × 64 grid points, so as to make the features of the underlying
spectrum and the Fourier amplitudes easier to see.

47

3.3 Effect of the Spreading Function

Figure 3.3 shows a contour plot of a two-dimensional, one-sided variance spectrum Ψ1s(kx, ky) and
a contour plot of a random surface generated from that variance spectrum. A particular spreading
function is implicitly contained in that two-dimensional variance spectrum. The effect on the
generated sea surface of the spreading function contained within Ψ1s(kx, ky) warrants discussion.

As discussed in Appendix B, a 2-D variance spectrum is usually partitioned as (see Eq. B.6)

Ψ(kx, ky) =
1
k
S(k)Φ(k, ϕ) ≡ Ψ(k, ϕ) .

Here S(k) is the omnidirectional spectrum discussed in Chapter 2, and Φ(k, ϕ) is a nondimensional
spreading function, which shows how waves of different frequencies propagate (or “spread out”)
relative to the downwind direction at ϕ = 0.

One commonly used family of spreading functions is given by the “cosine-2S” functions (Longuet-
Higgins et al., 1963), which have the form

Φ(k, ϕ) = CS cos2S(ϕ/2) , (3.8)

where S is a spreading parameter that in general depends on k, wind speed, and wave age. CS is
a normalizing coefficient that gives ∫ 2π

0
Φ(k, ϕ) dϕ = 1 (3.9)

for all k. The cosine-2S functions are asymmetric, with much stronger downwind than upwind
propagation (see Fig. B.5). This is important for the generation of time-dependent surfaces, as
will be discussed in the next chapter.

Figure 3.4 shows a surface generated with the omnidirectional variance spectrum of Elfouhaily
et al. (ECKV) as described in §B.3, combined with a cosine-2S spreading function (3.8) with
S = 2 for all k values. The wind speed is 10 m s−1. The simulated region is 100 × 100 m using
512× 512 grid points. Note in this figure that the mean square slopes (mss) compare well with the
corresponding Cox-Munk values shown in Table 4.1. The mss values for the generated surface are
computed from finite differences, e.g.

mssx(r, s) =
z(r + 1, s)− z(r, s)

x(r + 1)− x(r)

averaged over all points of the 2-D surface grid. The 〈θx〉 and 〈θy〉 values shown in the figure are the
average angles of the surface from the horizontal in the x and y directions). These are computed
from

θx(r, s) = tan(mssx(r, s)) ,

etc., averaged over all points of the surface. The mssx values of this 2-D image can be compared
with those of the 1-D simulation of Fig. 2.7.

The spreading function used in Fig 3.4 was chosen (with a bit of trial and error) to give a
distribution of along-wind and cross-wind slopes in close agreement with the Cox-Munk values
(except for a small amount of Monte-Carlo noise). Figure 3.5 shows a surface generated with a

48

slope variable DFT value Cox-Munk formula Cox-Munk value
mssx 0.031 0.0316U 0.032
mssy 0.021 0.0192U 0.019
mss 0.052 0.001(3 + 5.12U) 0.054

Table 3.1: [Comparison of Cox-Munk mean square slopes and values for an DFT-generated 2-D
surface.

Figure 3.4: A sea surface generated with the ECKV omnidirectional spectrum and a cosine-2S
spreading function with S = 2. Compare with Fig. 3.5.

cosine-2S spreading function with S = 20; all other parameters were the same as for Fig. 3.4. This
S value gives wave propagation that is much more strongly in the downwind direction ϕ = 0, as
would be expected for long-wavelength gravity waves in a mature wave field. The surface waves
thus have a visually more “linear” pattern, whereas the waves of Fig. 3.4 appear more “lumpy”
because waves are propagating in a wider range of angles ϕ from the downwind. These cosine-2S
spreading functions are plotted in §B.3.1, along with other commonly used spreading functions.

As shown in §B.1, the total mean square slope depends only on the omnidirectional spectrum
S(k). Thus the total mss is the same (except for Monte Carlo noise) in both figures, but most of
the total slope is in the along-wind direction in Fig. 3.5.

49

Figure 3.5: A sea surface generated with the ECKV omnidirectional spectrum and a cosine-2S
spreading function with S = 20. Compare with Fig. 3.4.

3.4 Resampling the DFT Grid for Ray Tracing

One of the most important uses of DFT-generated sea surfaces is Monte-Carlo ray tracing for
the computation of sea surface optical reflectance and transmittance. Such calculations require
repeatedly finding the point of intersection of a light ray with the random sea surface and finding
the angle of the ray from the normal to the surface at the point of intersection. Those calculations
are most easily performed if the sea surface is constructed as an array of triangular wave facets. The
three vertices of each wave facet define a plane, so that the ray tracing then amounts to finding the
intersection of a line with a plane. The direction of the normal to the surface is constant within each
triangular wave facet and is easily determined from the elevations at the vertices of the triangles.

Sea surfaces generated using DFT techniques are defined by a rectangular grid of surface ele-
vations. Ray tracing with such a surface would be greatly complicated by the fact that the four
points of each grid cell or wave facet do not in general define a plane, but rather a curved surface
whose form depends on the surface elevations at the four points. Moreover, the local normal to the
curved sea surface varies from point to point within each rectangular cell. It is therefore desirable
to “resample” the rectangular DFT grid to obtain a grid of triangles. One way to do this is shown
in Fig. 3.6. The blue lines of this figure show the rectangular DFT grid for the case of an 8× 8 m
region of water surface with the origin of the x − y coordinate system placed at the center of the
region. The DFT grid has Nx = 16 and Ny = 8 points. The red dots show a hexagonal grid of
triangles defined using every other x grid point and every y point of the DFT grid; one of these
triangles is colored in red. It is clear that this mapping requires that Ny = Nx/2. The number of
triangle vertices defined in this way is Nvertices = 3Ny

2 (Ny

2 + 1) + 1, and the number of triangular

50

wave facets generated from these vertices is Nfacets = 3
2N2

y .

Figure 3.6: Example mapping of a rectangular computational grid used in DFT simulations of a
random sea surface (blue lines) to a hexagonal grid of triangles as used in ray tracing (red dots).
The DFT grid points at the right and top, shown by the dotted blue lines, are obtained by the
inherent spatial periodicity of the surface as determined by DFT techniques. Thus the surface
elevation of point 35 is the same as that of point 27, point 57 is the same as point 1, etc. One of
the triangles generated from the DFT grid is shaded in red.

It may seem wasteful to compute the surface elevation at each of the DFT grid points (the points
where the blue lines intersect) and then discard roughly half of these points when resampling the
DFT grid to obtain a hexagonal grid of triangular wave facets. However the extremely fast run time
of the FFT algorithm makes this option much more efficient than the regular Fourier technique given
in Mobley (1994, his Eq. 4.77). That technique computes the surface elevations only at the needed
triangle vertices, but requires much more time to evaluate the 2-D discrete Fourier transforms than
the FFT technique described here. Other grid resampling schemes can be devised. For example,
each DFT grid point can be used, with the result being a collection of “right-facing” and “left-
facing” right triangles. However, I already had ray tracing code that uses the resampling described
above to compute surface reflectance and transmittance functions (Mobley, 2014, Appendix B). A
different layout requires a different formulation of the ray tracing algorithms, so I stayed with my
original resampling scheme for this tutorial and subsequent work (Mobley, 2015).

51

Figure 3.7 shows an example of a sea surface defined on a rectangular DFT grid and the
corresponding hexagonal patch of sea surface defined by a grid of triangular wave facets derived
from a rectangular grid as in Fig. 3.6. The origin of the coordinate system has been placed at the
center of the Lx × Ly = 100 × 100 m region. The hexagonal-grid sea surface is ready for use in
ray tracing computations with existing algorithms. Although those computations are conceptually
simple, the actual calculations are quite tedious. Mobley (2014, Appendix B) gives the details of a
ray tracing algorithm for a sea surface defined by a hexagonal grid of triangular wave facets. (That
report also gives the details of how ray tracing is performed for polarized light.)

3.5 Example: Reflectance by Different Surface Models

We have now seen how to correctly generate 2-D surface realizations. The previous chapter made
two important points that underlie surface generation. First, in §2.5.1 we pointed out two errors
in the widely used equations of Tessendorf (2004). His version of our Eq. (2.9) does not divide
the one-sided energy spectrum by 2 to convert it to a two-sided spectrum, and his version of Eq.
(2.11) does not have the overall scale factor of 1√

2
. Omission of these factors in either the 1-D

equations (2.9) and (2.11), or in the 2-D equivalents (3.3) and 3.4), makes the Fourier amplitudes ẑ

a factor-of-two too large. Consequently the wave amplitudes (surface elevations) will be too large
and energy, which is proportional to wave amplitude squared, will not be conserved by a factor of
four in a round-trip calculation like that of §2.5.2. Second, in §2.6 we pointed out the importance
of resolving the sea surface slopes when the generated surfaces are used for optical calculations, and
we presented a simple way to rescale variance spectra so that the generated surfaces adequately
reproduce both the elevation and slope variances of real sea surfaces, even though the elevation
variance spectrum is sampled over a limited range of spatial frequencies.

Figure 3.8 shows the consequences for optical calculations of either omitting the scale factors
on the amplitude equations or failing to resolve the slope variance. Polarized ray tracing was
performed as described in Mobley (2014) to compute the percentage of the total incident energy
reflected into all directions for the sun at a given zenith angle in an otherwise black sky. The wind
speed was 10 m s−1, and the surface was modeled using Lx = Ly = 200 m and Nx = 1024, Ny = 512
as required for the resampling of the FFT grid as described in §3.4. Rays were traced for 50,000
independent surface realizations to obtain average reflectances with negligible Monte Carlo noise.
The black curve shows the energy reflectance (without regard for the state of polarization) for a level
sea surface; this reflectance is given by the well known Fresnel reflectance equations (e.g. Mobley,
1994, Eq. 4.14). The solid green curve shows the reflectance for DFT-generated surfaces when the
correct amplitude equations (3.3) and (3.4) are used, and when the slope variance is fully resolved
via the δ(k) function of Eqs. (2.17) and (2.18) for the given values of Lx, Ly, Nx and Ny. The
dashed green curve shows the reflectance for surfaces generated using the well known Cox-Munk
wind speed–wave slope statistics as described in Mobley (2014, §4.3). Cox-Munk surfaces model
the surface slopes, but not the surface wave elevations. We see that the FFT-generated surface is
in excellent agreement with the Cox-Munk surfaces. The agreement is good because both surfaces
resolve the slope statistics. (Calculations not shown here indicate that Cox-Munk and FFT surfaces
do differ by a few percent at large incident angles for other wind speeds.)

The red curve shows the reflectance computed when the correct amplitude equations (3.3) and

52

Figure 3.7: The blue lines in the top panel show a sea surface specified on a rectangular DFT grid.
The red dots show the points used to define an hexagonal grid of triangles as in Fig. 3.6. The
bottom figure shows the surface specified by the hexagonal grid of triangular wave facets shown by
the red dots in the top figure.

53

Figure 3.8: Energy reflectance by different sea surface models for a wind speed of 10 m s−1.

3.4) are used, but the 2-D elevation variance spectrum is sampled only over the spatial frequency
ranges determined by the values of Lx, Ly, Nx and Ny. That is, the slope variance is not fully
resolved. Because the undersampled slope variance is less than the true slope variance, the generated
surfaces are too smooth for the high spatial frequencies (short wavelengths), and the reflectance
is too large. The difference is significant at sun angles near the horizon. The blue curve shows
the reflectance when the slope variance is fully resolved, but the Tessendorf equations are used
to generate the Fourier amplitudes. The surface is now too rough (the amplitudes are too large),
which reduces the reflectance is the same manner as a higher wind speed does. (The reflectance at
large incident angles decreases with increasing wind speed because of increased surface roughness.)
Although ray tracing and optics are beyond the scope of this tutorial, Fig. 3.8 is included here to
emphasize the importance of properly modeling the sea surface when doing calculations of surface
optical properties.

3.6 Example: Tiling a Two-dimensional Surface

As was explained in §2.3, a Fourier-generated surface is periodic in the x and y directions. A
qualitative visual impression of a large area of sea surface can be created by computing a patch
of sea surface of some size Lx × Ly and then simply repeating or tiling that surface in the x and
y directions. Figure 3.9 shows an example of a surface area (outlined in orange) that has been
replicated in a 3 × 3 tile pattern to create a surface that is nine times as large as the computed
surface. In a movie or video game, the sea surface would likely be just the background for something
happening in for foreground, and the viewer might not notice the periodicity of the background,
especially in a time-dependent image.

54

Figure 3.9: Example of a 3 × 3 tiling of a patch two-dimension surface to create a larger area of
sea surface. The surface patch actually generated is outlined in orange.

55

CHAPTER 4

Two-Dimensional, Time-Dependent Surfaces

One final step remains: the addition of time dependence to a sequence of the sea surface real-
izations. Many scientific applications do not need time dependence. This is the case when many
independent random realizations of sea surfaces are used for Monte Carlo ray tracing to compute
the average optical reflectance and transmittance properties of wind-blown sea surfaces. However,
time dependence is crucial for applications such as computer-generated imagery for movies.

We already have the needed theory in hand. The fundamental Eqs. (3.3) and (3.4), and their
expansions such as Eq. (3.7) include time dependence. Most importantly, these equations made no
simplifying assumptions about the ±k symmetry of the two-sided variance spectrum Ψ2s(k).

As we have learned, the Fourier transform of a snapshot of the sea surface gives a two-sided
variance spectrum with identical values for −k and +k. This represents equal amounts of energy
propagating in the −k and +k directions, i.e., equal amounts of energy in waves propagating upwind
and downwind. Such a situation in nature gives standing waves. Here also, if Ψ2s(−k) = Ψ2s(k),
the time-dependent surface will be standing waves composed of waves of equal energy propagating
the +k and −k directions. To obtain waves propagating downwind, as is the case in a real ocean,
we must use an asymmetric two-sided spectrum with Ψ2s(−k) << Ψ2s(+k), so that almost all
of the energy is propagating downwind. Note, however, that we cannot simply set Ψ2s(−k) = 0,
which represents no energy at all propagating upwind, because Ψ2s(−k) = 0 destroys the Hermitian
property of Eq. (3.4). Thus we must conjure up an asymmetric variance spectrum that allows a
nonzero (although perhaps negligible) amount of energy to propagate upwind.

An asymmetric two-sided variance spectrum can be constructed using an asymmetric spreading
function Φ(k, ϕ) as described in §B.3.1. Spreading functions of the form

Φ(k, ϕ) = Cs cos2S(k)(ϕ/2) (4.1)

described there allow some energy to propagate in −k directions, i.e. when |ϕ| > π/2. With this
choice of a spreading function, we can let the magnitude of Ψ2s(+k) equal the magnitude of the
one-sided variance function Ψ1s(+k), which gives the total variance, because we assume that a
negligible amount of the total energy propagates in −k directions. With this assumption, there is
no division of Ψ1s(+k) by 2 in the first line of Eq. (3.3).

Once an asymmetric Ψ2s(±k) has been defined, we can evaluate Eq. (3.3) for a set of random

56

numbers ρ(kuv) and σ(kuv). This is done only once. Then to generate a sequence of sea surface
realizations for times t = 0,∆t, 2∆t, ..., we multiply the time-independent amplitudes by the time-
dependent cosines and sines as shown in Eq. (3.7). We thus obtain the amplitudes ẑ(kuv, t) at the
current time t. The inverse Fourier transform of this ẑ(kuv, t) gives the sea surface z(xrs) at time
t.

The physics (or lack thereof) of this process is simple. We start with a realization of the sea
surface at time zero. This surface contains waves of many discrete frequencies kuv traveling in all
directions ϕuv. Then to get the surface at any later time t, we simply propagate the sinusoidal waves
of each frequency kuv in their original direction of travel through a phase change determined by the
time step and the dispersion relation ω(kuv). For deep-water gravity waves, the dispersion relation
is ω(kuv) =

√
gkuv. It thus visually appears that the waves are propagating and the sea surface

profile is changing with time. However, this Fourier transform technique is really just moving a
collection of independent, non-interacting sinusoids through frequency-dependent phase angles to
create a new surface realization from the sum of the phase-shifted sinusoids. In a real ocean, waves
of difference frequencies can interact with each other (redistribute energy among frequencies) in
highly complex and nonlinear ways, so that the sea surface statistics may not be time-independent.
This is, in particular, how little waves grow to big waves when the wind begins to blow over a
level surface. Modeling the nonlinear evolution of a sea surface is beyond the abilities of Fourier
transform techniques which are, at heart, just a mathematical artifice based on a time-independent
directional variance density spectrum.

Figure 4.1 shows a sequence of surface realizations for a 10 m/s sec wind speed and a spatial
grid of size Lx ×Ly = 100× 100 m, and a grid resolution of Nx ×Ny = 256× 256. A time series of
images made with such a course grid could be useful for some non-scientific purposes.

We have seen that the spatial pattern of a sea surface generated by a Fourier transform is
periodic. This is convenient for tiling a small computed region into a visually acceptable larger
region. When time dependence is included and a finite-length time series of images is created, the
sequence of images is not periodic in time because the various sinusoids comprising the surface do
not have a common period. As pointed out by Tessendorf (2004, §4.2), this can be remedied by
“quantizing” the temporal frequency ω(kuv) as follows.

Let Tr be the length of time over which the time sequence of surface realizations should exactly
repeat. The number of frames Nt in the video loop determines the time step between frames,
∆t = Tr/Nt. For a smoothly moving sea surface, Nt must be large enough that ∆t is less than 0.1
s. Define ωo ≡ 2π/Tr. For deep-water gravity waves, the true temporal frequency ω(kuv) =

√
gkuv

is replaced by

ω̃(kuv) =

⌊√
gkuv

ωo

⌋
ωo , (4.2)

where bxc converts a real number x into its integer part (e.g., 15.23 is converted to 15). This
operation slightly alters the temporal frequency of each wave component so that each component
returns to exactly its initial shape after time Tr. A video loop can then be created from the sequence
of surfaces, and the loop will match perfectly when the frame for time Tr −∆t goes to the frame
for time Tr, which is the same surface as time 0, after which the surfaces repeat. This adjustment
to ω is greatest for the lowest frequencies, but the adjustment becomes smaller and smaller as the
repeat time becomes larger and larger. It is thus easy to create a time-dependent small area of sea

57

Figure 4.1: A time-dependent sequence of 2-D sea surfaces for a 10 m s−1 wind speed. The physical
domain is 100× 100 m; the sampling is 256× 256 points. The vertical scale of the plots is -3 to +3
m. The wind is blowing in the +x direction, which is from the upper left to the lower right of each
figure.

58

surface that can be tiled in both space and time to create an image of a larger sea surface over a
longer time. This is good enough to fool movie-goers who have not studied this tutorial.

In order to employ a re-scaled variance spectrum as described in §2.6, determine the value of
the δNy parameter using the omnidirectional variance spectrum, as seen in Eq. (2.19). Then apply
the δ(k) correction to the directional spectrum Ψ(kx, ky) with k = kuv for each (kx(u), ky(v)) point
of the rectangular grid.

An example of a 20-second (simulated time) video loop created using all of these tricks can be
seen at http://www.oceanopticsbook.info/view/surfaces/level_2/twodimensional_timedependent_
surfaces.

59

http://www.oceanopticsbook.info/view/surfaces/level_2/twodimensional_timedependent_surfaces
http://www.oceanopticsbook.info/view/surfaces/level_2/twodimensional_timedependent_surfaces

CHAPTER 5

Autocovariance Functions and the Wiener-Khinchin Theorem

This chapter explores an alternate path to the specification of surface roughness properties. Clearly,
wind-dependent variance spectra are applicable only to surface waves that are generated by wind.
Consider, however, the surface of a flowing river. The river’s surface can have ripples or waves
generated by turbulence resulting from unstable shear flow induced by flow over a shallow bottom,
or by eddies created as the water flows around rocks in the river. These water surfaces can have
different statistical properties, hence different reflectance properties, than wind-roughened water
surfaces. Such surfaces can be described by their autocovariance functions.

Autocovariance functions can be converted to elevation variance spectra via the Wiener-Khinchin
theorem. This chapter shows how that is done. Once a given autocovariance function has been
converted to its equivalent elevation variance spectrum, the algorithms of the previous chapters are
immediately applicable, even though the variance spectrum is not wind-dependent. Indeed, this
conversion enables the Fourier transform methods of the previous chapters to be used to generate
random realizations of any surface, not just water surfaces.

As is often the case, there is a large gap between textbook theory—usually developed for
continuous variables or an infinite sample size of discrete values—and its implementation in a
computer program for a finite sample size of discrete variables. In particular, careful attention1

must be paid to sampling of an autocovariance function in order to obtain the corresponding
variance spectrum, or vice versa. I find it disappointing and frustrating (but not surprising) that
numerical matters such as the effects of finite sample size, maximum lag size, and exactly how to
sample spectra or autocovariances (in particular, the material of §5.5) never seem to be mentioned

1Given the care expended here on numerical details, it seems not unreasonable to ask for the same care in

pronunciation. Professor “Khinchin’s” name is properly spelled Hinqin. The abominable Romanization of the

Cyrillic H with a Latin Kh has been the cause of centuries of mispronunciation. The origin of the error lies perhaps

in the adoption of some Greek letters for the Cyrillic alphabet, and the Cyrillic h looks similar to the Greek χ, which

has a “kai” sound. In any case, this grievous orthographic error traces back at least as far as Edward Gibbon who,

in his otherwise excellent history of the decline and fall of the Roman Empire, Romanized Qingis Han as Gengis

Khan rather than as Chhingis Han. The CyrillicH is pronounced close to the ch in the Scottish “loch” or the German

“doch.” However, pronunciation with a simple English H, i.e. Hinchin rather than Khinchin, will suffice unless you

are dining with Russians. If you do find it necessary to say Khinchin in order not to confuse the chattering classes,

at least pronounce the first guy’s name as “Veener” and not “Weener.”

60

in textbooks on digital signal processing or related subjects. It is left to the innocent student to
spend a few weeks of unfunded time figuring out why various numerical results are not internally
consistent or do not perfectly match the textbook theory.

This chapter begins with a discussion of autocovariances, and then the Wiener-Khinchin theorem
is stated. The theorem is numerically illustrated first using the wind-dependent Pierson-Moskowitz
elevation variance spectrum, for which certain values can be analytically calculated and used to
check the numerical results. The modeling of water surfaces generated by shear-induced turbulence
is then illustrated, again using analytical functions that allow for a rigorous check on the numerical
results.

5.1 Autocovariance

The autocovariance Czz(`) of z(r) is defined as

Czz(`) ≡ E{z(r)z(r + `)} , (5.1)

where E denotes statistical expectation and ` is the spatial lag. This definition in terms of the
expectation holds for both continuous and discrete variables. For the present discussion with z(r)
being sea surface elevation, Czz(`) shows how strongly the sea surface elevation at one location is
correlated to the elevation at a distance ` away. Czz(`) has units of m2, and Czz(` = 0) is the
variance of the surface elevation. The autocovariance is an even function of the lag: Czz(−`) =
Czz(`).

Consider an infinite sample of discrete zero-mean surface elevations spaced a distance ∆x apart.
The autocovariance is then computed by (e.g. Proakis and Manolakis, 1996, their Eq. 2.6.3 with a
minor change in notation)

Czz(`) =
+∞∑

r=−∞
z(r)z(r + `), for ` = 0,±1,±2,

Here ` is indexing the lag distance in units of the sample spacing ∆x. For a finite sample of N

discrete values, the same authors define the sample autocovariance by (their Eq. 2.6.11)

Czz(`) =
N−|`|−1∑

r=0

z(r)z(r + `) . (5.2)

However, for a finite sample of N discrete values, perhaps with a non-zero mean, the IDL autocor-
relation function (A CORRELATE) uses

Czz(`r) =
1
N

N−|`|−1∑
r=0

[z(r)−m][z(r + `)−m] for − (N − 2) ≤ `r ≤ N − 2 , (5.3)

where

m =
1
N

N∑
r=0

z(r)

61

is the sample mean. Matlab computes the autocovariance via

Czz(`) =
1

N − 1

N−|`|−1∑
r=0

[z(r)−m][z(r + `)−m] .

Note that the lag must be less than the length of the sample. (That is, the sample locations are at
xr = r∆x, r = 0, ..., N − 1 and the allowed lag distances are `r = r∆x, r = 0, ..., N − 2.) Note also
the factor of 1/N in the IDL definition (5.3), which does not appear in Eq. (5.2), and which is a
factor of 1/(N − 1) in the Matlab version. These differences in the definitions and computations of
autocovariances can make it difficult to compare textbook theory with real-world situations.

Nor is there even any concensus on the terms “autocovariance” and “autocorrelation.” Some
authors (and this tutorial) define the nondimensional autocorrelation ρzz(`) as the autocovariance
normalized by the variance, i.e.

ρzz(`) ≡
Czz(`)
Czz(0)

. (5.4)

However, Proakis and Manolakis (1996) call the autocovariance as used here the autocorrelation,
and they call the autocorrelation of Eq. (5.4) the “normalized autocorrelation.” These sorts of
differences, along with the various definitions for Fourier transforms, can cause much grief when
comparing the numerical outputs of different computer codes, or numerical outputs with textbook
examples.

5.2 The Wiener-Khinchin Theorem

Now that the autocovariance has been defined, the Wiener-Khinchin theorem can be stated: The
Fourier transform of the autocovariance equals the variance spectral density function. Symbolically,

Fν{Czz(`)} = S2s(ν) . (5.5)

Indeed, some texts define the spectral density as the Fourier transform of the autocovariance. The
inverse is of course

F−1
ν {S2s(ν)} = Czz(`) . (5.6)

Here S2s is a two-sided spectral density function as discussed in §2.3.
It is important to note (as emphasized by the ν subscript on the Fourier transform operator

F) that the theorem is written with the ν version of the Fourier transform (Eq. 1.8), and the
density function is written in terms of the spatial frequency ν, which has units of 1/meters. (In
the time domain, the conjugate variables are time t in seconds and frequency f in 1/seconds =
cycles/second = Hz.) The spectral density function for the angular spatial frequency k = 2πν (or
angular temporal frequency ω = 2πf in radians per second in the time domain) can be obtained by
noting that corresponding intervals of the spectral densities contain the same amount of variance:

S2s(k)dk = S2s(ν)dν ,

which gives

S2s(k) =
1
2π
S2s(ν = k/2π) . (5.7)

62

Note that ` varies from −∞ to +∞ and, likewise, ν or k ranges over all negative and positive
values. The variance spectrum obtained from the Fourier transform of an autocovariance function
is therefore a two-sided spectrum.

Comment: In light of Eq. (5.7), the theorem stated in terms of angular spatial frequency k

appears to be
Fk{Czz(`)} = 2πS2s(k) , (5.8)

with the inverse
F−1

k {S2s(k)} =
1
2π

Czz(`) . (5.9)

I say “appears to be” because I’ve never seen the theorem written this way because the textbooks
all seem to stick with x and ν (or t and f in the time domain). As Press et al. (1992, page 491)
say in Numerical Recipes, “There are fewer factors of 2π to remember if you use the (ν or) f

convention, especially when we get to discretely sampled data....” In any case, Eqs. (5.8) and (5.9)
are consistent with the k spectrum of Eq. (5.17), discussed below.

The theorem is usually proved in textbooks for continuous variables x and ν. However, in
numerical application to a finite number of discrete samples, discrete variables xr and νu or ku are
used, and proper attention must be paid to pesky factors of N , 2π, and bandwidth, and to the
array ordering required by a particular FFT routine.

The continuous-variable Fourier transform in Eq. (5.5) gives a spectral density S2s(ν) with
units of m2/(1/m). However, if the theorem is written for a DFT of discrete data Czz(`r) = Czz(r),

Dν{Czz(r)} = S2s(νu) , (5.10)

then the resulting discrete spectrum S2s(νu) = S2s(u) has units of m2. Just as was discussed in
Eqs. (1.20) and (2.12), this discrete spectrum must be divided by the bandwidth ∆ν in order to
obtain the density at ν = νu. That is,

S2s(ν = νu) = S2s(u)/∆ν . (5.11)

5.3 The Horoshenkov Autocorrelation Function

Horoshenkov et al. (2013, Eq. 4) give an analytic formula for the autocorrelation function of surface
waves generated by bottom-induced turbulence in shallow flowing water. In the notation of this
note, this function is2

ρzz(`) = exp
(
− `2

2σ2
w

)
cos

(
2π

Lo
`

)
. (5.12)

Here “σw relates to the spatial radius of correlation (correlation length)” and “Lo relates to the
characteristic period in the surface wave pattern.” The average values for the physical conditions
of the Horoshenkov et al. (2013) study are σw = 0.22 m and Lo = 0.17 m.

2Equation (5.12) is Horoshenkov’s W (ρ) as shown in their abstract and in their conclusions, where it has a factor

of 1/2 in the exponential. Their Eq (4) does not have the 1/2. This is probably a typo since Gaussians usually have

the form exp[−x2/(2σ2)].

63

5.3.1 The Horoshenkov Variance Spectrum

Equation (5.12), when converted to an autocovariance via a factor of the variance, 〈z2〉 = Czz(0),
has the form

Czz(`) = Czz(0) exp
(
− `2

2σ2
w

)
cos

(
2π

Lo
`

)
= Czz(0) exp

(
−a2`2

)
cos(qo`) , (5.13)

where a = 1/(
√

2σw) and qo = 2π/Lo. This function has an easily computed analytical Fourier
transform.

The continuous-variable Fourier transform of this Czz(`) is given by Eq. (1.8):

S2s(ν) = Fν{Czz(`)} =
∫ ∞

−∞
Czz(`) e−i2πν` d` . (5.14)

Here ` and ν are continuous variables; S2s(ν) has units of m3, which is interpreted as m2/(1/m)
as explained in §1.2. Note that this variance spectral density is two-sided, i.e., ∞ < ν < ∞.
Expanding the complex exponential via e−iθ = cos θ − i sin θ gives

S2s(ν) =
∫ ∞

−∞
Czz(0) exp

(
−a2`2

)
cos(qo`) cos(2πν`) d`

− i

∫ ∞

−∞
Czz(0) exp

(
−a2`2

)
cos(qo`) sin(2πν`) d` .

The imaginary term is zero because the integrand is an odd function of `. Using the identity

cos x cos y =
1
2

[cos(x + y) + cos(x− y)]

gives

S2s(ν) = 2Czz(0)
∫ ∞

0
exp

(
−a2`2

) 1
2
{cos[(2πν + qo)`] + cos[(2πν − qo)`]} d` .

The integral ∫ ∞

0
exp

(
−a2`2

)
cos(b`) d` =

√
π exp[−b2/(4a2)]

2a

gives the Fourier transform of the Czz(`) of Eq. (5.13):

S2s(ν) =
√

π

2
σwCzz(0)

{
exp

[
−1

2
(2πσw)2(ν + 1/Lo)2

]
+ exp

[
−1

2
(2πσw)2(ν − 1/Lo)2

]}
. (5.15)

This variance spectrum has maxima at ν = ±1/Lo, where the value is very close to
√

π
2 σwCzz(0).

Figure 5.1 plots this Czz(`) (Eq. 5.13) and S2s(ν) (Eq. 5.15) for typical values of σw = 0.22 m,
Lo = 0.17 m, and Czz(0) = 2.5 × 10−7 m2. Note that the sub peaks of the autocovariance lie at
integer multiples of ±Lo, and that the peaks of the spectrum are at ±1/Lo.

By definition, the integral over all frequencies of an elevation variance spectral density gives the
total elevation variance 〈z2〉:

〈z2〉 =
∫ ∞

−∞
S2s(ν)dν .

64

Figure 5.1: The Horoshenkov autocovariance and variance spectral density S2s(ν) for typical pa-
rameter values taken from their Table 3.

This can be computed analytically for the spectrum of Eq. (5.15). The S2s(ν) spectrum of Eq.
(5.15) is the sum of two identical Gaussians centered at different ν values. Consider the one centered
at ν = 1/Lo, which involves the exponential with the ν − 1/Lo term. The total variance is then
twice the integral of this Gaussian:

〈z2〉 = 2
√

π

2
σwCzz(0)

∫ ∞

−∞
exp

[
−1

2
(2πσw)2(ν − 1/Lo)2

]
dν .

Letting x = ν − 1/Lo gives

〈z2〉 = 2
√

π

2
σwCzz(0)

∫ ∞

−∞
exp

[
−c2x2

]
dx ,

where c2 = 1
2(2πσw)2. The integral ∫ ∞

0
exp

[
−c2x2

]
dx =

√
π

2c

then gives the final result:

〈z2〉 = 4
√

π

2
σwCzz(0)

√
π

2 1√
2
2πσw

= Czz(0) . (5.16)

65

Thus starting with a variance of Czz(0) in the autocovariance of Eq. (5.13), obtaining the variance
spectral density from the Fourier ν-transform of the autocovarience, and then integrating the vari-
ance spectral density over ν thus gives back the variance as originally specified in the autocovariance
function.

However, if the above process is naively carried through starting (as in Eq. 5.14) with the
k-transform of Eq. (1.10), the end result (as in Eq. 5.16) is 2πCzz(0). This extra factor of 2π

is rectified by the 1/2π factor seen in Eq. (5.7). Thus the k version of the Horeshenkov spectral
density is

S2s(k) =
1
2π

√
π

2
σwCzz(0)

{
exp

[
−1

2
σ2

w(k + qo)2
]

+ exp
[
−1

2
σ2

w(k − qo)2
]}

. (5.17)

Integration of this S2s(k) over all k then results in 〈z2〉 = Czz(0), as required. The reader may
enjoy showing that the inverse k transform (1.11) of the spectral density (5.17) gives Czz(`)/(2π),
as expected from Eq. (5.9).

5.4 Numerical Illustration of the Wiener-Khinchin Theorem

The Wiener-Khinchin theorem can be illustrated with one figure, but that figure requires a lot of
discussion.

The blue curve of Panel (a) in Fig. 5.2 plots the one-sided Pierson-Moskowitz spectrum (B.12)
for wind speed of U10 = 5 m s−1. Using this spectrum, surfaces are generated at N = 1024 points
over a region of length L = 100 m. Note that N is a power of 2 as required for the use of the
fast Fourier transform algorithm. The spacing of these points is at intervals of ∆x = L/N =
0.0944 m. The red dot at ν1 = 1/L = 0.01 1/m is the fundamental frequency. The point at
νN/2 = 1/(2∆x) = 5.12 1/m is the Nyquist spatial frequency. The green vertical ticks show the
locations of the remaining N − 2 points, which are evenly spaced at intervals of ∆ν = 0.01 1/m.

These discrete samples of the variance spectrum are then used as described in §2.5.1 to create a
random realization of the sea surface z(r) at N points. One such surface, generated for a particular
sequence of random variables, is shown in Fig. 5.2(c). The periodogram of this surface, computed
via Eqs. (2.5, 2.6, 2.12), is shown in red Fig. 5.2(b). The blue curve in this panel is the one-sided
spectrum S1s(ν) of Panel (a), replotted for reference. The statistical noise in the periodogram
is Gaussianly distributed about the theoretical S1s(ν). These three panels of the figure are the
essentially the same as Fig. 2.4. (The sequence of random numbers used to generate the surface is
different and linear axes are used for the upper-right panel.)

Equation (5.3) applied to the z(r) of Panel (c) gives the autocovariance shown in red in Panel
(d). This curve contains statistical noise. To obtain a theoretical curve for comparison, the Pierson-
Moskowitz spectrum was sampled at 2048 points to insure coverage of most of the spectrum. The
Wiener-Khinchin theorem (5.10) was then used to obtain the autocovariance from the discretely
sampled spectrum:

Czz(`r) = D−1
ν {S2s(u)} = D−1

ν {S2s(ν = νu)∆ν} . (5.18)

Here the DFT was computed via Eq. (1.15). Note that the discrete spectrum S2s(u) was obtained
by sampling the continuous spectral density at the desired ν values and then multiplying by the
appropriate bandwidth. Because S2s(u) is a real and even function of νu, its Fourier transform is

66

Figure 5.2: Illustration of the Wiener-Khinchin theorem for a single realization of a random sea
surface.

67

also real and even. The result is shown as the green curve in this Panel (d). Equation (2.13) gives the
total variance of 〈z2〉 = 0.0197 m2 for U10 = 5 m s−1. The numerical result obtained by sampling
S2s(ν) and taking the inverse Fourier transform as just described gives Czz(0) = 〈z2〉 = 0.0178 m2.

The autocorrelation of the Pierson-Moskowitz spectrum in temporal form can be analytically
computed (Latta and Bailie, 1968, Eq. 40), but the result is a formula of horrible complexity
consisting of the sum of five slowly converging infinite series, the terms of which are themselves
are products of infinite series. That paper plots the numerically evaluated result in terms of an
unspecified but normalized temporal lag, which makes comparison with the present results for
spatial lag quantitatively impossible. However, de Boer (1968, §4.3 & 4.4) obtained the spatial
covariance of the Pierson-Moskowitz spectrum in the form of integrals of Bessel functions, which
also require careful numerical evaluation. Figure 5.3 shows their result for the autocovariance
function of waves in the down-wind direction. Their plot is in terms of a nondimensional normalized
lag distance ξN = (2g/U2)`. The green curve of Fig. 5.2(d) has a minimum of −0.0063 m2 at
` = ±7.96 m. This translates to an autocorrelation of -0.31 at a normalized lag of ξN = 6.3.
These value are in reasonable agreement with the minimum seen in Fig. 5.3, keeping in mind that
the curves in that figure were themselves generated on a 1960’s era computer by difficult numerical
integrations of unknown accuracy. The agreements for the variance and the location and magnitude
of the minimum indicate that the numerically computed CPM

zz (`) is probably correct for all lags.
(This numerical calculation will be verified again with greater accuracy in the discussion of the
Horoshenkov spectra below, for which the exact autocovariance is known.)

Figure 5.3: Fig. 7 from de Boer (1968): “Spatial correlation Function of Wind-Generated Ocean
Surface Waves in the Down-Wind Direction.” The normalized lag distance is ξN = (2g/U2)`.

Taking the DFT of the green curve in Fig. 5.2(d) should give the two-sided spectrum S2s(ν)
corresponding to the one-sided spectrum plotted in Panel (a). The green curve in Panel (e) of that
figure shows the result (after dividing by the finite bandwidth, as mentioned previously), which is
indeed one-half of the one-sided spectrum S1s(ν) (shown in blue). This provides a check on the
correctness of a round-trip Fourier transform.

Taking the DFT of the red curve in Panel (d) gives a sample estimate of S2s(ν), which is shown
in red in Panel (e). This curve has statistical noise, but it visually appears to be distributed about
the theoretical value given by the green curve.

68

The statistical noise inherent in any single random realization of the sea surface and its auto-
covariance can be reduced by averaging the results from many surface realizations. Figure 5.4 is
the same as Fig. 5.2, except that Nsurf = 100 independent surfaces are generated. This reduces
the statistical noise by a factor of 1/

√
100. The red curve in Panel (b) shows the ensemble average

periodogram for the 100 surfaces. It is clear that the average periodogram is in excellent agreement
with the theoretical variance spectrum, except for a small amount of remaining statistical noise.

The red curve of Panel (d) is the average autocovariance for the 100 surfaces. This curve is
much closer to the theoretical (green) curve than the autocovariance for the single surface of Fig.
5.2(d). The DFT of this average autocovariance is shown by the red curve in Panel (e). Again, this
curve has much less noise and is closer to the (green) theoretical spectrum.

The statistical noise in the ensemble averages can be made arbitrarily small by averaging more
and more surfaces. Figure 5.5 shows that averages for 1,000 surfaces have noise levels in the
periodogram, autocovarinace, and spectrum derived from the autocovariance, that are almost un-
noticeable at the scale of the figures.

5.5 Sampling Strategy and Computational Details

This section shows exactly how the calculations underlying Figs. 5.2, 5.4, and 5.5 are performed.
The devil is in the details, and these details are seldom discussed in the literature. Consider the
case of N = 8, which will allow individual points to be plotted. Of course, with so few sample
points, the variance spectrum is not adequately sampled and the resulting sea surface is unphysical
because it has far too little variance. However, the algorithms are the same for any value of N .

Consider first the generation of the random sea surface with N points. As discussed previously,
the two-sided spectrum must be sampled at exactly N spatial frequencies, which are given by Eq.
(2.8). The green dots in Fig. 5.6(b) show these points for the case of N = 8. The frequency values,
written in math order as in Eq. (2.7), are

{νu, u = 0, 1, ..., N − 1} =
[
−N

2
+ 1, ...,−1, 0, 1, ...,

N

2

]
∆ν , (5.19)

which for the choice of L = 100 m and N = 8 gives

{νu, u = 0, 1, ..., 7} = [−3,−2,−1, 0, 1, 2, 3, 4]∆ν , (5.20)

where ∆ν = 1/L = 0.01 m−1. Here braces {...} denote a set of frequencies labeled by u values, and
brackets [...] denote an array of frequency values as shown. Note that the sampled frequencies are
symmetric about ν = 0, except for one “extra” point at index u = N − 1 or frequency (N/2)∆ν.
This value is the Nyquist frequency, which in IDL is stored as the last element of the frequency
array in math order. Sampling the spectrum at exactly this pattern of frequencies guarantees that
the spectral amplitudes generated from them are Hermitian, which in turn guarantees that the
generated sea surface is real. The red dots in Panel (c) of the figure show the 8 surface elevations
generated for a particular sequence of random numbers. The values are at xr = 0 to L − ∆x for
r = 0 to N − 1. Fourier-generated surfaces are inherently periodic, so that z(L) = z(0).

Now take the inverse DFT as in Eq. (5.18) for the discrete spectrum given by the green dots
in Panel (b). The result is the autocovariance values shown by the green dots in Panel (d). It

69

Figure 5.4: Same as Fig. 5.2, but for 100 surface realizations. The red curve in Panel (d) is
the average of the autocovariances of the 100 surfaces. The red curve in Panel (e) is the Fourier
transform of the 100-surface average of Panel (d). Only the first surface is plotted in Panel (c).

70

Figure 5.5: Same as Fig. 5.2, but for 1000 surface realizations. The red curve in Panel (d) is
the average of the autocovariances of the 1000 surfaces. The red curve in Panel (e) is the Fourier
transform of the 1000-surface average of Panel (d). Only the first surface is plotted in Panel (c).

71

Figure 5.6: Illustration of sampling strategy for N = 8 sample points.

72

is important to note that these N = 8 lag values follow the same pattern (in math order) as the
frequencies:

{`r, r = 0, 1, ..., 7} = [−3,−2,−1, 0, 1, 2, 3, 4]∆x , (5.21)

where now ∆x = L/N = 12.5 m. The lags are symmetric about ` = 0, except for one “extra”
point at (N/2)∆x. This is analogous the one extra value in the frequency spectrum at the Nyquist
frequency. Taking the forward DFT of these 8 autocovariance values as in Eqs. (5.10) and (5.11)
gives the green points plotted in Panel (e). These values are of course exactly the 8 points of the
original spectrum, as shown by the green dots in Panel (b). This is just a check on the correct
implementation of the “round trip” calculation of inverse and forward Fourier transforms.

Now suppose that we wish to compute the autocovariance of the surface elevations, and from
that obtain an estimate of the variance spectrum via the Wiener-Khinchin theorem. This provides
a more stringent test of the calculations because of the intermediate sea surface in between the
variance spectrum and the autocovariance. The crucial observation is that when calling the IDL
autocovariance routine A CORRLELATE, that routine must be given an array of the requested
lag indices (lags in units of ∆x) as seen in Eq. (5.21). Thus for an array of surfaces,

zsurf = [z(r = 0), z(r = 1), ..., z(r = 7)] , (5.22)

an array of lags
lagindex = [−3,−2,−1, 0, 1, 2, 3, 4] , (5.23)

must be defined. The call to the IDL routine is then

Czz = A CORRLELATE(zsurf, lagindex, /COVARIANCE) . (5.24)

The IDL routine then returns an array of autocovariances at the lags shown in Eq. (5.21). These
values are shown by the red dots in Fig. 5.6(d). This Czz array returned by A CORRLELATE has
the same math order as the lagindex array. This array must next be shifted into the FFT order
via the IDL shift function:

CzzFFT = SHIFT(Czz,−N/2 + 1) . (5.25)

This array can now be given to the IDL FFT routine:

S2s = FFT(CzzFFT) . (5.26)

The resulting S2s array is a complex 8-element array. The real part of S2s is S2s(u), with the
frequencies in FFT order. The imaginary part is zero (to within a bit of roundoff error; values are
typically less than 10−10). This array is shifted back to math order and divided by ∆ν to get the
array plotted as the red dots in Panel (e) of the figure:

S2splot = REAL PART(SHIFT(S2s, N/2− 1))/∆ν . (5.27)

It is always informative to take an “information count” of such operations. We started with
a two-sided spectrum of 8 values. It is true that in the present time-independent simulations
S2s(−ν) = S2s(+ν) (except for the 0 and Nyquist frequencies, which are always special cases).
However, this symmetry need not hold in general (and indeed is not the case when generating

73

waves that propagate downwind, as explained previously). Thus these spectrum values represent 8
independent “pieces” of information in the form of 8 real numbers.

The 8 elevations of the sea surface are likewise 8 independent pieces of information.
Finally, the 8 covariances also comprise 8 pieces of information. Similarly to the variance

spectrum, there is symmetry about the 0 lag, except for the value at the largest positive lag.
However, again, the fact that Czz(−`r) = Czz(+`r) represents two pieces of information: the value
of Czz(+`r) and the fact that Czz(−`r) has the same value.

Thus the sampled variance spectrum S2s(u), the generated surface z(r), and the surface auto-
covariance Czz(r) all contain the same amount of information, namely 8 real numbers. The various
Fourier transforms and autocorrelation function show how to convert the information from one
form to another.

5.5.1 Idle Speculations

It is certainly possible to sample in different ways. For example, surface correlations can be com-
puted for all lags from −L+∆x to +L−∆x, which gives 2N−1 total Czz(`r) values. You can then
take the FFT of that covariance and get a spectrum with 2N − 1 values. However, I can guarantee
you from two weeks of misery that the spectrum so obtained does not agree with the original S2s(ν)
spectrum. The N − 1 extra points added by taking a greater range of correlations are in some way
not independent of or consistent with the N independent pieces of information tallied above. That
is to say, the sea surface contains only N pieces of information, and you cannot create more infor-
mation simply by computing the autocovariance at more lag values. I vaguely remember reading
somewhere that you should not compute autocovariances for lags greater than one-half of the data
range. Note that the lag indices used above run from values of (−N/2 + 1)∆x to (N/2)∆x, which
indeed correspond to the −L/2 + ∆x to +L/2 data range. I suspect, but have never seen stated,
that there is something going on here that is analogous to sampling at greater than the Nyquist
frequency—You can do it, but it messes up the results in ways that are not immediately obvious.

Another possible way to compute the autocovariance for a given sea surface is to compute Czz(`r)
only for 0 and positive lags out to a maximum possible lag of L − ∆x. This would again give N

independent numbers. Autocovariances are real and even functions of the lag (symmetric about
` = 0), which means that their Fourier transforms are also real and even. Since eiθ = cos θ + i sin θ,
a Fourier transform can be written as the sum of a cosine transform plus i times a sine transform:
F{·} = C{·}+ iS{·}. Here the cosine transform C is defined as in Eq. (1.8) except that e−i2πνx is
replaced by cos(2πνx); the sine transfrom S is defined in the same way but with sin(2πνx) replacing
e−i2πνx. For an even function, the sine components in the Fourier transform will all be zero. Thus it
seems that Eq. (5.5) could be written as C{Czz(`)} = S2s(ν). An example of this was seen above in
the analytical computation of the Horoshenkov variance spectrum. However, there are four different
algorithms for implementing the discrete cosine transform (DCT), which differ by how the discrete,
finite-N sequence of points is assumed to be extended outside the domain for which Czz(`r) is
known. It seems that the present case of Czz(`r), which is symmetric about `r = 0, corresponds
to the “Type I” DCT discussed at https://en.wikipedia.org/wiki/Discrete cosine transform or the
“y1” extension seen in Fig. 2(a) of Makhoul (1980). The four different formulations of the DCT
can be computed in four different ways by use of FFTs. Thus the use of a DCT in Eq. (5.5) opens
a new can of worms. In any case, there is little or no penalty to be paid for sticking with a Fourier

74

https://en.wikipedia.org/wiki/Discrete_cosine_transform

transform evaluated by an FFT routine in order to evaluate the DFTs as needed here. As a matter
of practical necessity, the internal consistency of the spectra, surfaces, and autocovariances seen in
the preceding figures (and to be seen below) indicate that the sampling scheme described above is
correct, even it there may be equivalent ones.

5.5.2 Lessons Learned

The preceding simulations illustrated the Wiener-Khinchin theorem starting with a variance spec-
trum S1s(ν) (the Pierson-Moskowitz spectrum) and arriving at an autocovariance Czz(`) in two
ways. The first way was to construct the corresponding two-sided spectrum S2s(ν) and then take
the inverse Fourier transform to obtain the theoretical, noise-free Czz(`) via the Wiener-Khinchin
theorem. The second way was to use S2s(ν) to generate a large number of random sea surfaces. The
autocovariance of each random surface was computed by Eq. (5.3), and then the ensemble-average
autocovariance was computed as the average of the individual autocovariances.

It is important to note that the size L of the spatial region and the number of sample points
N must be chosen with care. As a rule, L must be large enough to cover several wavelengths of
the longest wave that contains a significant amount of the total variance. N must be large enough
that the sampled points on the variance spectrum then reach far enough into the high-frequency
end of the spectrum to cover the entire part of the spectrum that contributes a significant amount
to the total variance. To see the effects of inadequate sampling, suppose we are concerned only
with the short gravity and capillary waves, which are optically the most important because they
have the highest slopes. If we are interested only in waves of wavelength ∼ 1 m down to ∼ 1 cm,
it might then seem reasonable to let L = 10 m and N = 1024, which give ∆x ≈ 1 cm. The
shortest resolvable wavelength is then 2∆x ≈ 2 cm. Figure 5.7 shows an example surface and other
quantities for this case.

However, now ∆ν = 1/L = 0.1 m−1 and the spectrum is sampled only at widely spaced points
(the green dots in Panel (b)) that largely miss the peak of the variance spectrum. Consequently,
the generated surface has too little variance compared to the real sea surface described by this
spectrum. Also, the sample autocovariance function, shown by the red curve in Panel (d), computes
the autocovariances only for lags up to L/2 = 5 m. This lag range does not capture the full
autocovariance features of the real surface, for which the autocovariance is non-zero out to lags
of ∼ 40 m, as shown by the green curve in Panel (d). The spectrum estimated from the sample
autocovariance (the red curve in Panel (e)) does reproduce the sampled spectrum (the green dots
in Panel (b)), but this spectrum is not representative of the real sea surface.

Picking L = 100 m, as in the previous simulations, seems adequate for a wind speed of 5 m s−1.
This can be seen from the leftmost red point in Panel (a) of the previous plots, which is to the left
of the spectrum maximum. However, N = 1024 then gives ∆ν = 0.01 m−1, and the last sampled
point corresponds to a shortest resolvable wavelength of 2∆x ≈ 20 cm. If that is not adequate
resolution for the problem at hand, there are two options. One option is to increase N , which
costs more computer time to evaluate the FFTs. Increasing N by a factor of 8 to N = 8192 then
gives 2∆x ≈ 2.4 cm, which might be adequate for the problem at hand. The time for an FFT
is proportional to N log2 N , so that increase in N comes at a factor-of-ten increase in run time,
which can be prohibitive if many surfaces must be generated. The other option is to account for
the unsampled variance in some other way. One technique for doing that is to adjust the spectrum

75

Figure 5.7: Example simulation with inadequate sampling of the variance spectrum.

76

to account for the missing variance while keeping N relatively small. One technique for doing this
is described in §2.6 and in Mobley (2015).

These results can be summarized as follows:

• The size of the spatial domain, L, must be large enough to cover at least several wavelengths
of the wave of maximum variance. The value of L sets the fundamental frequency ν1 = 1/L,
which equals the frequency interval ∆ν.

• For the given fundamental frequency ν1, the number of spatial samples, N , must be large
enough that the highest (Nyquist) frequency, νN/2 = (N/2)∆ν covers the domain of the
variance spectrum for which the variance is non-negligible. This highest sampled frequency
must also cover the highest frequency (shortest wavelength) needed for the problem at hand.
The minimum resolvable wavelength is 2∆x = 2L/N .

Of course, the need for large L and large N comes as the cost of increased computer time. Exper-
imentation is necessary to determine what values are required for a particular physical situation.

5.6 Turbulence-generated Water Surfaces

This section now considers the generation of random water surfaces beginning with the analytical
autocovariance function of Horoshenkov et al. (2013), which is seen in Eq. (5.13). This particular
autocovariance has an analytical spectrum, Eq. (5.15), which was computed in §5.3.1. Thus, for
surface generation, the two-sided spectrum of Eq. (5.15) simply replaces the two-sided Pierson-
Moskowitz spectrum used in the previous section, and the surface-generation calculations proceed
as described in the previous chapters. The autocovariance function is then not needed. However,
in general, if only the autocovariance is known or measured, then the needed variance spectrum
must be obtained via the Wiener-Khinchin theorem. In the present study, knowing both the
autocovariance and the spectral density as analytical functions provides a powerful check on the
discrete numerical calculations of the same quantities.

The application of the above results is straightforward. If only the autocorrelation, rather than
the autocovariance, is given, then a separate value of the surface elevation variance must be known.
For the Horoshenkov study, a typical value of the surface variance is Czz(0) = 2.5 × 10−7 m2.
(This is extremely small by oceanographic standards, but the surface waves in the Horoshenkov
experiment had amplitudes of order 1 mm.) The previously cited parameter values of σw = 0.22 m
and Lo = 0.17 m are used here. Since the characteristic spatial scales of σw and Lo are of order 0.2
m, a spatial region of length L = 4 m should be adequate to capture the spatial features of these
surfaces. An N value of 1024 then gives the smallest resolvable wavelength as 2∆x ≈ 0.8 cm, which
is the scale of capillary waves. (Capillary waves have wavelengths in the range of a few millimeters
to 2 cm.)

Figure 5.8 shows an example simulation based on the Horoshenkov variance spectrum (5.15).
The layout is the same as for the Pierson-Moskowitz figures. Panel (d) of the figure contains three
autocovariance plots: The green curve is the inverse DFT of the sampled variance spectrum, which
is shown in green in Panel (b). The red curve is the ensemble average autocovariance of 1000
water surface simulations. The purple curve is the theoretical autocovariance of Eq. (5.13). These
three curves are indistinguishable at the scale of this plot. This nearly perfect agreement between

77

autocovariance derived in three different ways indicates that the various numerical calculations are
almost without doubt being done correctly.

The red curve in Panel (e) of the plot shows the variance spectrum derived via the Wiener-
Khinchin theorem as the DFT of the ensemble-average autocovariance (the red curve in Panel (d)).
Again, this curve is almost indistinguishable from the theoretical autocovarinace, which is shown
in green. Again, this agreement indicates that the DFTs are being computed correctly.

5.7 Two-dimensional Water Surfaces

My IDL and Fortran codes for generation of two-dimensional, time-independent water surfaces are
formulated using a one-sided, two-dimensional elevation variance spectrum Ψ(kx, ky) of the form
(see Eq. B.6)

Ψ(kx, ky) =
1
k
S1s(k)Φ(k, ϕ) . (5.28)

Here S1s(k) is a one-sided omnidirectional spectrum and Φ(k, ϕ) is a nondimensional spreading
function (recall §). To generate a 2-D, time-independent surface using the Horoshenkov model, the
two-sided omnidirectional spectrum of Eq. (5.17) is multiplied by 2 to obtain a one-sided spectrum,
which my code evaluates only for the non-negative kx values, i.e. for −π/2 ≤ ϕ ≤ π/2. The code
then divides the result by 2 to get a two-sided spectrum and evaluates the −kx half plane of values
by symmetry. Thus it is easy to replace an omnidirectional oceanographic S1s(k) spectrum with
that of Horoshenkov. There remains only the issue of what to use for a spreading function. There
is no information about the spreading functions of turbulence-generated waves in the Horoshenkov
et al. (2013) paper. There is no doubt some flow-induced difference in the waves in the “down-
river” vs “cross-river” directions, just as there is in the “down-wind” vs “cross-wind” directions
for wind-generated waves. However, pending further information on that difference, it is probably
reasonable to use a frequency-independent, isotropic spreading function, Φ(ν, ϕ) = 1

2π . With that
assumption, two-dimensional surfaces can be generated.

Figure 5.9 shows an example two-dimensional, turbulence-generated surface created with the
σw = 0.22 m, Lo = 0.17 m and Czz(0) = 2.5×10−7 m2 values used for Fig. 5.8. This particular 2-D
surface realization has an elevation variance of 2.48×10−7 m2, which is close to the value of Czz(0)
value used as input to the Horoshenkov spectrum. It is also noted that along any slice through the
surface, there are about two dozen “bumps” in 4 m, just as seen in the 1-D surface realization of
Fig. 5.8. Figure 5.10 shows the slice through the 2-D surface at y = 2. This surface is qualitatively
like that of the middle panel of Fig. 5.8. These results indicate that the 2-D calculations are
correct.

The visual appearance of the Horoshenkov surface is strikingly different from the wind-generated
sea surface seen in Fig. 5.11, which is for a 5 m s−1 wind speed. In these plots, the surfaces have
a factor-of-8 difference in the scaling of the surface elevation relative to the horizontal: 0.02 m
vertical to 4 m horizontal = 0.005 for the Horoshenkov surface compared 4 m to 100 m = 0.04 for
the wind-blown surface. This is purely for the visual appearance of the 3D perspective plots. The
Horoshenkov surface is actually quite smooth, with an average wave facet slope of only about 0.6
deg. The wind-blown surface has an average slope angle of about 3.7 deg in the along-wind direction
and 2.9 deg in the cross-wind direction. (Keep in mind that for this simulation ∆x = 100/1024,
so the smallest resolvable wave has a wavelength of about 20 cm. Thus the smallest waves, which

78

Figure 5.8: Example of a turbulence-generated water surface based on the autocovariance function
of Horoshenkov et al. (2013). Compare the qualitative appearance of panel (c) with the sea surface
shown in Fig. 5.2(c).

79

Figure 5.9: A 2-D turbulence-generated surface. White is large positive surface elevations (wave
crests) and dark blue is large negative values (wave troughs).

Figure 5.10: A slice through the surface of Fig. 5.9 at y = 2.

80

Figure 5.11: A wind-generated surface for a wind speed of 5 m s−1. Compare with Fig. 5.9.

can have large slopes, are not resolved. An actual sea surface will therefore have larger average
slopes.) Thus the Horoshenkov surface is smoother than the wind-blown surface. These differences
highlight the original hypothesis that led to this note: turbulence-generated water surfaces may
have significantly different optical reflectances than wind-generated surfaces. That hypothesis can
be tested by ray tracing calculations based on surfaces like those of Figs. 5.9 and 5.11.

81

APPENDIX A

Computation of Discrete Fourier Transforms

As has been noted, the fast Fourier transform (FFT) is a numerical algorithm that computes the
discrete Fourier transform (DFT) of a sequence of N complex numbers. The number of operations
required for unoptimized evaluation of the DFT is proportional to N2, where an “operation” can
be thought of as a multiplication followed by an addition. This is referred to as an “order N2”
calculation, denoted O(N2). If N is a power of 2, the FFT requires only O(N log2 N) operations,
which is an enormous computational savings when N is large. This appendix illustrates via numer-
ical examples the use of the FFT algorithm for the computation of DFTs when N is not a power of
2. It is shown that modern FFT routines can compute DFTs for any N , but with an efficiency that
depends strongly on N . Most importantly, it is also shown that “padding” or extending a data set
with values of 0 to obtain a number of data values that is a power of two, and then using the FFT
on the padded data, is absolutely wrong. This data extension simply gives an efficient calculation
of a wrong answer.

When generating sea surface realizations for scientific or computer graphics purposes, the value
of N usually can be chosen to be a power of two, and the FFT can be employed. However, when
working with real data, the value of N is often fixed by circumstances. For a contrived example,
suppose you designed an experiment to measure the sea surface elevation every ∆t seconds at a
given point, or every ∆x meters along the surface at a given time. You wisely planned to obtain
N = 2048 = 211 measurements so that you could use the FFT to convert those measurements
to a variance spectrum as described previously. However, the instrument died after only 1975
measurements were obtained. What is to be done with this data set of 1975 values? There are
several possibilities:

1. You can discard the 1975 data values, fix the instrument, and repeat the experiment to get
2048 measurements. That might or might not be possible, but in any case is a waste of data.

2. You can use only the first 1024 = 210 data values in the FFT. That computation will be
efficient, but still wastes part of the data.

3. You can do a “brute-force” calculation of the DFT for N = 1975. That will make full use of
the data. The only penalty to be paid for not having N be a power of 2 is extra computation
time.

82

4. You can give the array of 1975 values to an FFT routine and see what happens. This will be
seen to be the best option, assuming that you have a sophisticated FFT routine such as those
available in IDL, Matlab, or the Fortran 90 routines in the FFTPACK package developed
at the National Center for Atmospheric Research. If that is the case, the FFT routine will
default to a DFT computation, and the resulting Fourier amplitudes will be the same as those
obtained from the unoptimized DFT with N = 1975.

5. You can pad the valid data set with zeros for values 1976, ..., 2048, and then take the FFT
of the 2048 data values. It will be shown below that this option gives incorrect results, in
that the computed Fourier amplitudes are not the same as those obtained from the DFT with
N = 1975.

I wrote this appendix because I have occasionally heard people say that “you just pad your data
with zeros to get a power of 2, and then take the FFT.” This is simply wrong because the data are
sea surface elevations, and a sea surface with a stretch of zero values (a level surface) following a
wavy surface simply isn’t physically realistic and isn’t the same as a surface completely covered by
waves.

A.1 Example Calculations

The initial figures of this section show the results of DFT and FFT calculations for the case of
N = 16. This is few enough points that the details can be easily plotted. Simulations with fewer
points are then discussed.

An ad hoc sea-surface wave profile was constructed as in §2.3 using formula (2.4). Figure A.1
repeats Fig.2.1 for easy reference. The upper left panel of Fig. A.1 shows the surface generated
in this manner for L = 10 m, N = 16, and a particular set of random phases. The thin colored
lines show the N/2 + 1 = 9 waves for each of the frequencies. The blue line is the wave for the
fundamental frequency νf = 1/L = 0.1 m−1; the thin black line is the two-point wave at the
Nyquist frequency νNy = 1/(2∆x) = 0.8 m−1; the purple line is the constant j = 0 wave, which
is set to z = 0 for the mean sea surface. The black dots connected by the thick black line show
the sum of the individual waves. These points represent a discrete sampling of the continuous sea
surface elevation.

I wrote a routine in IDL to evaluate the DFT Eqs. (1.14) and (1.15) without regard for any
of the computational efficiencies used in the FFT. This unoptimized routine gives the “worst-case”
baseline for comparison with more efficient IDL FFT calculations. The DFT of the sea surface (the
dotted black line) was then computed with this DFT routine. The real and imaginary parts of the
resulting Fourier amplitudes ẑ(u) are shown in the upper-right and lower-left panels, respectively,
of Fig. A.1. Each spatial frequency is identified by the color. Values for positive frequencies are
shown by solid dots, and the values for negative frequencies are open circles. As discussed in §2.3,
the upper-right panel shows that the real part of the amplitudes is an even function of frequency,
i.e. ẑ(−νu) = ẑ(+νu). The lower-left panel shows that the imaginary part of the the amplitudes is
an odd function of frequency, i.e. ẑ(−νu) = −ẑ(+νu). This illustrates that the Fourier amplitudes
of a real function are Hermitian. The amplitude at ν = 0 is shown by the black square. This
amplitude represents the “DC signal” and is 0 because the mean sea level was set to 0. The black

83

Figure A.1: Example DFT calculations. The black line with dots in the upper-left panel shows
the sea surface profile; the thin lines are the component waves at the difference frequencies. The
upper-right panel shows the real part of the DFT, and the lower-left panel shows the imaginary
part. The lower-right panel shows the one-sided (red) and two-sided (blue) variance spectra.

diamond at ν = 0.8 m−1 is the amplitude at the Nyquist frequency, which IDL stores in the array
position for the largest positive frequency. This value is non-zero for the real part of ẑ(νNy) and
zero for the imaginary part. This is because the real part of ẑ(u) describes the cosine terms of the
Fourier decomposition of the surface elevations, and the imaginary part represents the sine terms.
The Nyquist frequency contains only the two-point cosine wave (there is no two-point sine wave), so
the imaginary part of ẑ(νNy) is always zero. The two-sided variance spectrum S2s(u) given by Eq.
(??) is shown in blue in the lower-right panel of the figure. The red dots show the corresponding
one-sided spectrum S1s.

When the sea surface shown in the upper left panel of Fig. A.1 is given to the IDL FFT routine,
the resulting amplitudes are exactly the same as those given by my brute-force DFT routine, but
the run time is much faster. The timing for these two routines will be discussed in the next section.

Now consider the case of N not a power of two. In analogy to the hypothetical experiment

84

with the instrument failure, the last two points of the sea surface profile were omitted. This gives
a surface with N = 14 points, which are shown in the upper-left panel of Fig. A.2. Note first
that because there are now only 14 points, there are only 14 spatial frequencies. The sampling
interval ∆x and frequency spacing ∆ν remain the same, but the Nyquist frequency is now at
N
2 ∆ν = 0.7 m−1 because there are fewer points.

Figure A.2: DFT calculations for the first 14 points of the surface of Fig. A.1.

The amplitude and variance spectrum at ν = 0 are no longer zero. This is because simply
omitting the last two points has made the mean of the remaining points non-zero. In this particular
case, the mean sea level is negative because the omitted points were both positive. If the 14-point
surface is re-centered to give a mean sea level of zero, then the ẑ(ν = 0) value changes to zero
without any change to the values at non-zero frequencies.

Although the 14 points of Fig. A.2 are exactly the same as the first 14 points of Fig. A.1, all
amplitudes are entirely different. This is simply because these are really two different sea surfaces
when periodically extended beyond the plotted points. The amplitudes for the 14-point surface
fully describe all of the information contained in the 14 values of the sea level elevation, and the
14-point DFT makes full and correct use of all of the available data. However, the information

85

contained in the 16-point surface is not fully contained in the first 14 points of the surface. The
variance spectrum for the 14 point surface seen in the lower-right panel is therefore only qualitatively
similar to that of 16-point surface. The variance of the 14-point surface is distributed among fewer
frequencies, with changes to each amplitude.

If these 14 points are given to the IDL FFT routine, the results are exactly the same as seen in
Fig. A.2. Even though the number of points was not a power of 2, the IDL FFT routine returned
the correct DFT, for reasons discussed below.

Now consider the question that led me to write this appendix: What happens if the 14-point
surface is padded with zeros to get a 16 point surface? This surface is shown in Fig. A.3. The red
dots in the upper-left panel show the two values that were set to zero in order to obtain 16 points
for the FFT. These 16 points were then given to the IDL FFT routine. It is clear from comparison
of Figs. A.1, A.2, and A.3 that the Fourier amplitudes (hence the variance spectrum) of the zero-
padded surface are entirely different from the amplitudes of either the original 16-point surface or
the truncated 14-point surface. A surface with some points set to zero is physically a different
sea surface from either the original surface or the truncated surface, so the Fourier amplitudes are
different. In other words, a data set cannot be naively padded with zeros in order to obtain enough
values for an efficient power-of-two FFT. In any case, given the ability of most FFT routines to
compute DFTs for any value of N , there is no need for padding a data set.

A.2 Timing

How the FFT algorithm works is described in numerous texts and web sites. A good explanation
can be viewed at https://www.youtube.com/watch?v=EsJGuI7e_ZQ. The programming details
can be quite complicated and need not be described here, but the basic idea is as follows. If N

can be factored into a product of small prime numbers, then the N -point DFT can be reduced to
a number of smaller DFTs, each of which can be computed in very little time. The time required
to compute several small-N DFTs and then combine the results to obtain the DFT for the original
large-N value is much less than the time for one large-N DFT. This process is most efficient when
N is a power of 2, in which case the factorization of N = 2m is just a product of m twos. However,
if N can be factored into a product of small primes, then the computations remain efficient. For
example, if N = 15, the prime factors are 3 and 5, and two DFTs of lengths 3 and 5 can be computed
and reassembled more quickly than one DFT of length 15. However, if N = 17, there is no prime
factorization (other than 1 and 17), and the FFT algorithm is forced to do a single 17-point DFT.
However, there can still be a significant speed improvement over a an unoptimized DFT routine
because FFT routines are written with great care to speed up the calculations. For example, these
routines typically pre-compute values of WN = exp(i2π/N), so that the exponentials in Eqs. (1.14)
and (1.15) can be evaluated as integer powers of WN . That is, exp(i2πru/N) = W ru

N , with no
repeated evaluation of sines and cosines needed.

The computation times required for a brute-force DFT and an FFT are compared as follows.
For a given N value, a data set was generated using a Gaussian random number generator with
zero mean and unit variance to generate a random z(r) value at each xr grid point. The DFT or
FFT of the set of random points was then computed and timed.

Figure A.4 shows the time required to compute one DFT using the unoptimized DFT routine.

86

https://www.youtube.com/watch?v=EsJGuI7e_ZQ

Figure A.3: FFT results for the 14-point surface of Fig. A.2 padded with zeros to get a 16-point
data set. The two red points in the upper-left panel show the sea surface values that were set to zero.
Note that the amplitudes for the zero-padded surface are entirely different from the amplitudes of
either the original surface of Fig. A.1 or the truncated surface of Fig. A.2.

As expected, the run time increases roughly as N2. Note that a single DFT for N = 4096 requires
about 1.15 seconds (on a 2.4 GHz laptop).

Figure A.5 shows the times required by the IDL FFT routine to computed 1000 transforms for
N values from 1000 to 1200. The run times vary greatly with the number of points N . The red
dots indicate N values that are prime numbers. The run times for prime-N FFTs are always much
slower than for composite-N values. Many of the composite-N times are almost as fast as the time
for the power-of-two N = 1024 case (0.047 sec), which is shown by the gold dot. For example, the
time for N = 1040 is almost the same as the 1024 value. 1040 factors into 2×2×2×2×5×13, so the
calculation requires four 2-point DFTs (very fast), one 5-point, and one 13-point DFT. However,
N = 1042 factors into 2× 521, so a 521-point DFT (slow) is required, and the time for N = 1042
is 0.593 sec. The prime-N times are all more than one second for this range of N values.

Figure A.6 shows the times for 1000 transforms using the FFT routine, for the same range of

87

Figure A.4: Time required to compute 1 DFT using an unoptimized DFT routine for N between
1000 and 4100.

Figure A.5: Time required to compute 1000 DFTs using the IDL FFT routine. The red dots
indicate values of N that are prime numbers.

N values as Fig. A.4. It is clear that the prime-N times are proportional to N2, but the shortest
times for the composite-N values can be much less. The gold dots at N = 1024, 2048, and 4096
indicate the power-of-two N values. Recall from above that a single unoptimized DFT for N = 4096
required 1.15 sec. The FFT required only 0.17 sec for 1,000 transforms. This is an improvement
in run time by a factor 6800 per transform for N = 4096. This decrease in run time comes from

88

a factor of N2/(N log2 N) = 341 and another factor of 20 from the programming efficiency of the
IDL routine, which does not simply plug numbers into sines and cosines to evaluate the complex
exponentials.

Figure A.6: Time required to compute 1000 DFTs using the IDL FFT routine for N between 1000
and 4100.

The preceding simulations support two conclusions:

1. Data should not be padded with zeros for the purpose of obtaining a number of data points
equal to a power of two in order to minimize the time required to compute the DFT of the
data using an FFT routine. Doing so simply gives a fast calculation of a wrong answer.

2. Commonly used FFT routines can compute the DFT for any value of N . They are extremely
efficient for composite N values that have small prime numbers as factors. However, even
for N values that are prime, they are still much more efficient than a naive evaluation of the
DFT.

89

APPENDIX B

Wave Spectra

The entire business of wave spectra can be exceedingly confusing. Just as for the DFT techniques
to generate sea surfaces, this is well known material. However, journal articles always assume that
the reader already understands the underlying ideas and mathematics. It is therefore worthwhile to
review the results needed for this tutorial. The best-written reference I’ve found for the development
of wave spectra is Holthuijsen (2007), who is very careful in his notation and terminology. The
notation used below is chosen to conform to that used in Elfouhaily et al. (1997), which will often
be referred to as the ECKV spectrum, after the last letters of the authors’ names.

The figures of the previous chapters were illustrated using two commonly used wave variance
spectra. The one-dimensional surfaces of §2.5 used the 1-D Pierson-Moskowitz spectrum, and the
two-dimensional surfaces of §3.2.2 and Chapter 4 used the 2-D spectrum of Elfouhaily et al. (1997).
After the introductory overview in the next section, the remaining two sections present these two
specific wave spectra for easy reference.

B.1 Overview of Wave Spectra

As we saw in §2.1 and 2.2, there is a close connection between the variance of the sea surface waves
and the energy per unit area contained in the waves. For a discretely sampled sea surface with
elevations z(r), the discrete Fourier transform (1.14) gives the corresponding amplitudes ẑ(u). The
discrete variance spectrum is then the function S(u) = |ẑ(u)|2, u = 0, ..., N − 1, which is often (but
not here!) loosely referred to as the discrete energy or power spectrum.

Care is required to formulate wave spectra for continuous variables. As in Eqs. (1.2) and (1.6),
we can write the continuous surface as a sum of sinusoids, e.g.

z(x) =
∞∑

n=0

zn(x) =
∞∑

n=0

An cos(knx + φn) . (B.1)

As we saw in §2.1, the variance of the sinusoid with frequency kn is 1
2A2

n. The waves of different
frequencies are independent, so the total variance of the surface can be written as the sum of the

90

variances of the individual waves:

var{z} =
∞∑

n=0

1
2
A2

n . (B.2)

Now let ∆kn be a frequency interval centered on frequency kn, whose sinusoid has amplitude An.
We then define

S(k = kn) ≡ lim
∆kn→0

1
2A2

n

∆kn
. (B.3)

In this definition, we keep in mind that each An is associated with a particular frequency kn, and
that the limit operation holds for each value of n. We are thus defining a function of the spatial
frequency, which becomes a continuous function of k as the bandwidth ∆kn goes to zero.

The quantity S(k) is called the omnidirectional variance spectrum. “Omnidirectional” means
that there is no reference direction (e.g., a direction relative to the wind direction) included in the
quantity. This is the case if a wave record is made at a single point as a function of time: the waves
go past and their elevations are recorded, but no information is obtained on the direction the waves
are traveling. S(k) is also called the omnidirectional elevation spectrum for obvious reasons. As is
to be expected, there is no uniformity of notation for this spectrum, but S seems to be the most
common symbol—and what is used in both Pierson and Moskowitz (1964) and Elfouhaily et al.
(1997) in the next sections—so that what I will use here. (E seems to be the second-most-common
symbol and is used in Holthuijsen (2007) and several other papers on my desk.) The units of
S(k) are clearly m2/(rad/m). Equations (B.2) and (B.3) show that integrating the omnidirectional
variance spectrum over all frequencies gives the total variance:

var{z} = 〈z2〉 =
∫ ∞

0
S(k)dk .

(The equations above are written in terms of spatial angular frequency k, as used for surface
generation, but the reasoning and functional form of Eq. (B.3) are the same for any other spatial
or temporal frequency variable.)

We now have two formulations of the variance at frequency kn: 1
2A2

n and |ẑ(n)|2. It is wise to
check that these are equivalent. In the numerical example of Fig. 2.1, sinusoids were generated
using

A(n) = 0.1 exp(−3n/N) .

The resulting surface was Fourier transformed to obtain the amplitudes ẑ(n), which are plotted in
Fig. 2.1. Table B.1 shows the variance for the first few frequencies for the numerical simulation
of Fig. 2.1. It is clear that the values of 1

2A2
n equal the values of the one-sided variance spectrum

obtained from the Fourier transform of the surface elevations z(r).
We can now repeat the above process for two dimensions, starting with

z(x, y) =
∞∑

n=0

∞∑
m=0

An,m cos(knx + kmy + φn) ,

and ending up with a function

Ψ(kx, ky) ≡ lim
∆kn→0

lim
∆km→0

1
2A2

n,m

∆kn∆km
. (B.4)

91

n A(n) = 0.1 exp(−3n/N) 1
2A2(n) S1S(n) = |ẑ(n)|2

[m] [m2] [m2]
0 0 0 0
1 0.0829 0.0034 0.0034
2 0.0678 0.0034 0.0024
3 0.0570 0.0016 0.0016
...

...
...

...

Table B.1: Comparison of variances computed two different ways. The values of |ẑ(n)|2 are taken
from the lower-right panel of Fig. 2.1.

Here the x and y subscripts on k remind us that there are independent spatial frequencies associated
with the x and y directions. Ψ(kx, ky) is the directional variance spectrum in Cartesian coordinates.
Its units are m2/(rad/m)2. This spectrum is often called the “two-dimensional wavenumber spec-
trum,” and its arguments are often written in vector form, Ψ(k), where k = (kx, ky) denotes the
location of the frequency point in the 2-D frequency plane. This spectrum depends on direction,
i.e., on the direction of the (kx, ky) point in a two-dimensional frequency plane. Usually, the +x

direction is chosen to be pointing downwind. In this case, the angle ϕ = tan−1(ky/kx) gives the
direction relative to the wind direction. At Eq. (B.4) shows, the integral of Ψ(kx, ky) over all
frequencies gives the variance of the two-dimensional surface:

var{z} = 〈z2〉 =
∫ ∞

−∞

∫ ∞

−∞
Ψ(kx, ky) dkx dky .

It is also common to define a directional spectrum in terms of polar coordinates given by the
magnitude k and direction ϕ of the vector k. These are are related to kx, ky by

k =
√

k2
x + k2

y

ϕ = tan−1

(
ky

kx

)
and inversely by

kx = k cos ϕ

ky = k sinϕ .

In this case we define

Ψ̃(k, ϕ) ≡ lim
∆k→0

lim
∆ϕ→0

1
2A2

n,m

∆k∆ϕ
. (B.5)

This spectrum has units of m2/[(rad/m) rad]. (The tilde notation is used here to distinguish this
spectrum from the Ψ(k, ϕ) spectrum of Elfouhaily, which is defined below. Some authors reserve
the name “directional spectrum” for Ψ̃(k, ϕ) and refer to Ψ(kx, ky) as the wavenumber spectrum.)
As before, definition (B.5) shows that integrating Ψ̃(k, ϕ) over k and ϕ gives the variance:

var{z} =
∫ ∞

0

∫ 2π

0
Ψ̃(k, ϕ) dk dϕ .

92

The directional spectrum given in §B.3 is specified in terms of polar coordinates k, ϕ. However,
we need a spectrum in terms of Cartesian coordinates kx, ky for use in a rectangular DFT grid.
The change of variables from polar to Cartesian coordinates is effected by the Jacobian

Ψ(kx, ky) = Ψ̃(k, ϕ)
∣∣∣∣ ∂(k, ϕ)
∂(kx, ky)

∣∣∣∣
= Ψ̃(k, ϕ)

∣∣∣∣∣ ∂k
∂kx

∂k
∂ky

∂ϕ
∂kx

∂ϕ
∂ky

∣∣∣∣∣
= Ψ̃(k, ϕ)

1
k

.

Note that the 1/k factor converts the units of Ψ̃(k, ϕ) into the units of Ψ(kx, ky).
In Eq. (B.15) of §B.3 this last equation is partitioned as

Ψ(kx, ky) =
1
k
S(k)Φ(k, ϕ) ≡ Ψ(k, ϕ) , [ECKV 45] (B.6)

where S(k) is an omnidirectional spectrum and Φ(k, ϕ) is a nondimensional spreading function,
which shows how waves of different frequencies propagate (or “spread out”) relative to the downwind
direction at ϕ = 0. Labels such as [ECKV 45] refer to the corresponding equations in Elfouhaily
et al. (1997). The spreading function by definition satisfies∫ 2π

0
Φ(k, ϕ) dϕ = 1 (B.7)

for all k.
Equation (B.6) shows that to obtain the ECKV variance spectrum in Cartesian coordinates we

need only evaluate the ECKV Ψ(k, ϕ) spectrum for the corresponding values of k and ϕ, i.e.

Ψ(kx, ky) = Ψ
(
k =

√
k2

x + k2
y, ϕ = tan−1(ky/kx)

)
. (B.8)

Note in particular that there is no “extra” k factor involved in the conversion of Ψ(k, ϕ) to Ψ(kx, ky);
both quantities have the same units.

Integration of Eq. (B.6) over the respective (kx, ky) and (k, ϕ) frequency planes gives the
variance as

〈z2〉 =
∫ ∞

−∞

∫ ∞

−∞
Ψ(kx, ky) dkx dky

=
∫ ∞

0

∫ 2π

0

1
k
S(k) Φ(k, ϕ) k dk dϕ

=
∫ ∞

0
S(k) dk , [ECKV A2] (B.9)

after noting the normalization of Eq. (B.7). Thus the variance of the sea surface is still contained
in the omnidirectional spectrum, even in the two-dimensional case. The omnidirectional spectrum
S(k) is obtained from Ψ(k, ϕ) via

S(k) =
∫ π

−π
Ψ(k, ϕ) k dϕ . [ECKV A3]

93

Now return to Eq. (B.1) and take the derivative to get the slope of the sea surface for the nth

wave:
dzn(x)

dx
= −Ankn sin(knx + φn)

As in Eq. (2.1), the variance of this slope is

var

{
dzn

dx

}
≡ 1

Λn

∫ Λn

0
[Ankn sin(knx + φn)]2 dx =

1
2
A2

nk2
n .

A limit operation corresponding to Eq. (B.3) gives

lim
∆kn→0

1
2A2

nk2
n

∆kn
= k2S(k) . (B.10)

The quantity k2S(k) is the omnidirectional slope variance spectrum, usually called just the slope
spectrum. The units of k2S(k) are m rad. Integrating the slope spectrum over all frequencies gives
the total variance σ2 of the sea surface slope:

σ2 ≡ var

{
dz

dx

}
=

〈(
dz

dx

)2
〉

=
∫ ∞

0
k2S(k)dk .

This variance is usually called the mean square slope or mss. The units of mss are rad2. This is
a nondimensional number, but the label of rad2 reminds us that we can think of the slope as an
angle from the horizontal measured in radians.

The corresponding relations for two dimensions are derived in the same fashion and lead to
similar results. Assuming that the wind is blowing in the +x direction, the mean-square slope in
the along-wind direction is given by either of〈 (

∂z(x, y)
∂x

)2 〉
≡ σ2

x ≡ mssx =
∫ ∞

−∞

∫ ∞

−∞
k2

x Ψ(kx, ky) dkx dky

=
∫ ∞

−∞

∫ π

−π
k2 cos2 ϕ Ψ(k, ϕ) k dk dϕ . [ECKV A4]

The corresponding equation for the cross-wind direction is〈 (
∂z(x, y)

∂y

)2 〉
≡ σ2

y ≡ mssy =
∫ ∞

−∞

∫ ∞

−∞
k2

y Ψ(kx, ky) dkx dky

=
∫ ∞

−∞

∫ π

−π
k2 sin2 ϕ Ψ(k, ϕ) k dk dϕ . [ECKV A5]

Recalling that variances of random variables add to get the total variance due to all variables gives
the total mean square slope

mss = mssx + mssy =
∫ ∞

−∞

∫ ∞

−∞
(k2

x + k2
y) Ψ(kx, ky) dkx dky

=
∫ ∞

−∞

∫ π

−π
k2 Ψ(k, ϕ) k dk dϕ

=
∫ ∞

−∞
k2 S(k) dk . [ECKV A6]

Thus, even in the 2-D case, the total slope variance can be obtained from the 1-D omnidirectional
slope spectrum.

Table B.2 summarizes the spectral quantities used in this tutorial.

94

Spectrum Name Symbols Units
1-D or omnidirectional

variance or elevation S(k) m2/(rad/m)
slope k2S(k) m rad

2-D or directional
variance or elevation Ψ(kx, ky), Ψ(k, ϕ) m2/(rad/m)2

alongwind slope k2
x Ψ(kx, ky), k2 cos2 ϕ Ψ(k, ϕ) rad2

crosswind slope k2
y Ψ(kx, ky), k2 sin2 ϕ Ψ(k, ϕ) rad2

total slope (k2
x + k2

y) Ψ(kx, ky), k2 Ψ(k, ϕ) rad2

Table B.2: Summary of spectral quantities.

B.2 The Pierson-Moskowitz Omnidirectional Gravity Wave

Spectrum

The Pierson-Moskowitz spectrum (Pierson and Moskowitz, 1964) describes gravity waves in a “fully
developed” sea. A fully developed sea is an idealization of the statistically steady-state wave field
resulting from a steady wind blowing for an infinitely long time over an infinite fetch. (In practice,
the duration and fetch required to achieve something close to a fully developed sea depend on
the wind speed. A steady wind of 5 m s−1 blowing for 10 hours over a fetch of 60 km might be
adequate; for hurricane winds of 35 m s−1, a fetch of a few thousand kilometers and a duration of
several days would be required. Thus it is much easier to approach a fully developed sea at low
wind speeds than at high.)

The one-sided, omnidirectional Pierson-Moskowitz spectrum, formulated in terms of angular
spatial frequency k, is

SPM(k) =
α

2k3
exp

[
−β

(g

k

)2 1
U4

19

]
[m2/(rad/m)] , (B.11)

where

α = 0.0081,

β = 0.74,

g = 9.82 m s−2 is the acceleration of gravity,

U19 is the wind speed in m s−1 at 19.5 m above the sea surface, and

k is the angular spatial frequency in rad m−1.

The wind speed at 19.5 m can be obtained from the more commonly used wind at 10 m above the
sea surface by the approximate formula

U19 ≈ 1.026U10 .

As has already been noted, it is often of interest to express a variance spectrum in terms of other
variables, such as the wavenumber ν or the temporal angular frequency ω. To change variables

95

in a spectral density function, the key is to recall that a variance density function by definition
expresses the variance per unit frequency interval. The variance contained in some interval dk of
the spatial angular frequency equals the variance contained in the corresponding interval dν of the
wavenumber or the interval dω of the temporal frequency. Thus we have

SPM(k)dk = SPM(ν)dν = SPM(ω)dω .

To change the variable from k = 2πν to ν, the previous equation gives

SPM(ν) = SPM(k)
dk

dν
= SPM(k = 2πν)2π ,

which results in

SPM(ν) =
α

8π2ν3
exp

[
−β

(g

2πν

)2 1
U4

19

]
[m2/(1/m)] . (B.12)

To change variables from spatial angular frequency k to temporal angular frequency ω, we use the
dispersion relation for gravity waves in deep water,

ω2 = gk ,

to evaluate
dk

dω
=

2ω

g
,

which leads to

SPM(ω) =
αg2

ω5
exp

[
−β

(
g

ωU19

)4
]

[m2/(rad/s)] . (B.13)

All of these formulas have units of meters squared over the appropriate frequency. (The quantities
dk/dν and dk/dω seen in the conversions are the Jacobians for the one-dimensional changes of
variables.) Figure B.1 shows the Pierson-Moskowitz spectrum as functions of k and ω for wind
speeds of U10 = 5, 10, and 15 m s−1.

This spectrum has withstood the test of time quite well (e.g., Alves and Banner, 2003) as a
description of gravity waves in fully developed seas. However, it should not be used for high-
frequency (short-wavelength) gravity waves, and certainly not for capillary waves. Likewise, it does
not describe young seas, which have not had the time or fetch needed to approach the state of a
well developed sea.

Figure B.2 shows the Pierson-Moskowitz slope spectra for three wind speeds. Note that the
slope spectrum falls off much more slowly for high frequencies than does the elevation spectrum.
That means that the higher frequencies contribute much more to the total slope variance than they
do to the total elevation variance.

96

Figure B.1: The Pierson-Moskowitz variance spectrum as functions of k and ω for wind speeds of
U10 = 5, 10, and 15 m s−1. The vertical dotted lines at k = 370 rad/m and ω = 60.3 rad/s show
the boundary between gravity and capillary waves.

Figure B.2: The Pierson-Moskowitz slope spectrum for wind speeds of U10 = 5, 10, 15 m s−1. The
plot uses the same ordinate scale as used for the elevation spectrum in the left panel of Fig. B.1 in
order to highlight the slow falloff of the slope spectrum compared to the elevation spectrum. The
vertical dotted line is the boundary between gravity and capillary waves.

97

B.3 The Elfouhaily et al. Directional Gravity-Capillary

Wave Spectrum

In order to model two-dimensional sea surfaces z(x, y), we need a wave variance spectrum that
describes the distribution of wave variance for waves propagating in difference directions.

As the examples in §3.1 showed, if we have measurements of the two-dimensional sea surface
elevation at a given time, z(xrs) = z(xr, ys) = z(r, s), then the two-dimensional discrete Fourier
transform of Eq. (1.17) gives the two-dimensional amplitudes

ẑ(kuv) = ẑ[kx(u), ky(v)] = ẑ(u, v) = F{z(r, s)} = F{z(xrs)} .

Dividing by the discrete frequency bandwidths gives an estimate (a 2-D periodigram) of the two-
dimensional variance spectral density

P (kuv) ≡
|ẑ(kuv)|2

∆ku∆kv
=

Ψ(kuv)
∆ku∆kv

, (B.14)

just as in the 1-D case. Here I have written z(xrs), ẑ(kuv), and Ψ(kuv) to emphasize that these
are discrete functions, whereas Ψ(k) denotes a spectral density function of the continuous variable
k. Just as in the 1-D case, the 2-D periodogram is an approximation of the 2-D variance spectral
density, P (kuv)

.= Ψ(k). As Eq. (1.17) shows, Ψ(kuv) has units of m2, whereas P (kuv) and Ψ(k)
have units of m2/(rad/m)2.

Unfortunately, making measurements of 2-D sea surfaces is extremely difficult. There are very
few such data sets obtained, for example, by laser reflectance measurements (e.g., Huang et al.,
2000), and these do not cover the full range of spatial scales. Given the paucity of empirical 2-D
wave data from which to develop 2-D variance spectra, the common procedure is to start with a
1-D or omnidirectional spectrum and add an angular spreading function to distribute the wave
energy over different directions relative to the downwind direction. In nature, most waves travel
more or less downwind, a small amount of energy is contained in waves propagating in nearly
cross-wind directions, and almost no energy is contained in waves that by some chance (such as
the breaking of a larger wave generating smaller waves in all directions) might be propagating in
upwind directions. The spreading function must capture this behavior. Although omnidirectional
wave spectra are well grounded in observations, the choice of a spreading function is something of
a black art.

Elfouhaily et al. (1997) presented an omnidirectional variance spectrum that explicitly includes
both the gravity and capillary wave scales. For brevity, I will often denote this paper and their model
by “ECKV,” taken from the initials of the authors’ last names. The boundary between gravity and
capillary waves is taken to be k =

√
ρg/τ = 370 rad/m, the angular spatial frequency at which

the restoring forces (which tend to bring a wave surface back to an unperturbed level surface) of
gravity and surface tension are equal. The corresponding wavelength is Λ = 2π/370 = 0.017 m.
They then combine their omnidirectional spectrum with a spreading function to obtain their one-
sided, directional variance spectrum. Using their notation, the one-sided, 2-D ECKV spectrum has
the form

Ψ(k, ϕ) =
1
k
S(k)Φ(k, ϕ) [ECKV 45] . (B.15)

98

Here S(k) is the 1-D omnidirectional spectrum with units of m2/(rad/m), and Φ(k, ϕ) is a non-
dimensional spreading function. Ψ(k, ϕ) thus has units of m2/(rad/m)2. Equation labels such as
[ECKV 45] give for reference the corresponding equation in the ECKV paper.

The ECKV omnidirectional spectrum is

S(k) =
Bl + Bh

k3
[ECKV 30] , (B.16)

where Bl is the low-frequency (long gravity wave) contribution to the variance, and Bh is the high-
frequency (short gravity wave to capillary wave) contribution. (The quantity k3S(k) is called the
curvature or saturation spectrum and is of interest in physical oceanography because it is related
to the rate of variance dissipation of the waves. Thus ECKV refer to Bl and Bh as the low and
high frequency curvature spectra.) The components of the omnidirectional spectrum are given by

LPM = exp[−1.25(kp/k)2] [ECKV 2]

Γ = exp{− 1
2σ2

[(
√

k/kp − 1)2]} [below ECKV 3]

Jp = γΓ [ECKV 3]

Fp = LPMJp exp{−0.3162Ωc(
√

k/kp − 1)} [ECKV 32]

Fm = LPMJp exp[−0.25(k/km − 1)2)] [ECKV 41]

(Note : A typo in ECKV Eq. 41 omitted the LPMJp factor in Fm)

Bl = 0.5αp(cp/c)Fp [ECKV 31]

Bh = 0.5αm(cm/c)Fm [ECKV 40]

where

α = 0.0081,

β = 1.25,

g = 9.82 m s−2 is the acceleration of gravity,

U10 is the wind speed in m s−1 at 10 m above the sea surface

k is the angular spatial frequency in rad m−1

Ωc is defines the age of the waves for the given wind speed:

= 0.84 for a fully developed sea (corresponds to Pierson-Moskowitz)

= 1 for a ”mature” sea [used in ECKV Fig 8a]

= 2 to 5 for a “young” sea; the maximum allowed value is 5

Cd10N = 0.00144 is a drag coefficient [value deduced from ECKV Fig 11]

u∗ =
√

Cd10NU10 is the friction velocity [using ECKV 61[

ao = 0.1733 (ECKV 59)

ap = 4.0

km = 370.0 rad/m

99

Figure B.3: The omnidirectional part S of the Elfouhaily et al. (1997) elevation variance spectrum
(left panel) and slope spectrum k2S (right panel) for fully developed seas and wind speeds of
U10 = 5, 10, 15 m s−1. The gray lines show the corresponding Pierson-Moskowitz spectra from Fig.
B.2.

cm = 0.23 m/s is the phase speed of the wave with spatial frequency km

am = 0.13u∗/cm [ECKV 59]

γ = 1.7 if Ωc ≤ 1 else γ = 1.7 + 6 log10(Ωc)

σ = 0.08(1 + 4Ω−3
c)

αp = 0.006Ω0.55
c [ECKV Eq. 34]

αm = 0.01[1 + ln(u∗/cm)] if u∗ ≤ cm else αm = 0.01[1 + 3 ln(u∗/cm)] [ECKV 44]

ko = g/U2
10

kp = koΩ2
c is the spatial frequency of the maximum of the spectrum

cp =
√

g/kp is the phase speed of the wave with spatial frequency kp

c =
√

(g/k)(1 + (k/km)2) is the phase speed of the wave

At the lower frequencies, the ECKV spectrum is essentially the Pierson-Moskowitz spectrum
(the LPM term above) with an enhancement (the Jp term) that adds more energy to the lower fre-
quencies. The highest frequencies have a cutoff due to viscosity damping out the smallest capillary
waves. The ECKV omnidirection elevation and slope spectra are illustrated in Fig. B.3 for the
case of a fully developed sea and three wind speeds. Figure B.4 shows the spectra as a function of
wave age for a wind speed of U10 = 10 m s−1.

100

Figure B.4: The omnidirectional part of the Elfouhaily et al. (1997) elevation spectrum (left panel)
and slope spectrum (right panel) for a wind speed of U10 = 10 m s−1 and wave ages from very
young (Ωc = 5) to mature (Ωc = 1) to fully developed (Ωc = 0.84). Compare with Fig. B.3.

B.3.1 Spreading Functions

The ECKV spreading function is given by

Φ(k, ϕ) =
1
2π

[1 + ∆(k) cos(2ϕ)]

=
1
2π

{
1 + tanh

[
ao + ap(c/cp)2.5 + am(cm/c)2.5

]
cos(2ϕ)

}
(B.17)

Note that this function is symmetric about ϕ = π/2; i.e., the function has symmetric spreading
downwind and upwind. This is consistent with a symmetric variance spectrum Ψ(−k) = Ψ(k) as
would be obtained from a the Fourier transform of a snapshot of a sea surface.

A commonly used family of alternate spreading functions is given by the “cosine-2S” functions
(Longuet-Higgins et al., 1963), which have the form

Φ(k, ϕ) = CS cos2S(ϕ/2) , (B.18)

where the normalizing coefficient is

CS =
1

2
√

π

Γ(S + 1)
Γ(S + 1/2)

,

and S is a spreading parameter that in general depends on k, wind speed, and wave age. In this
equation Γ is the customary gamma function defined by Γ(p) ≡

∫∞
0 xp−1e−xdx where p > 0. The

cosine-2S functions are asymmetric, with much stronger downwind than upwind propagation.
The ECKV and cosine-2S spreading functions are illustrated in Fig. B.5. Both of these functions

satisfy the normalization condition (B.7). Both spreading functions transition from strongly forward

101

peaked at low spatial frequencies (long gravity waves; the red curves) to curves with significant
propagation at right angles to the wind at high frequencies (capillary waves; the blue curves). The
cosine-2S curves are asymmetric in ±k and have at least a small amount of upwind propagation
at all frequencies (except at exactly upwind, ϕ = π). Not surprisingly, the real ocean is more
complicated than either of these models. In particular, observations of long-wave gravity waves tend
to show a bimodal spreading about the downwind direction, which transitions to a more isotropic,
unimodal spreading at shorter wavelengths (e.g. Heron et al., 2006). However, the simple models
of Eqs. (B.17) and (B.18) are adequate for the present purpose of illustrating surface-generation
techniques.

Figure B.5: Example spreading functions according to the ECKV model (left) and the cosine-2S
model (right) for a wind speed of 10 m s−1. Downwind is to the right, upwind is to the left.

102

References

J. H. G. M. Alves and M. L. Banner. Revisiting the Pierson-Moskowitz asymptotic limits for fully
developed wind waves. J. Phys. Oceanogr., 33:1301–1323, 2003.

R. R. Bracewell. The Fourier Transform and Its Applications, Second Edition, Revised. McGraw-
Hill, 1986.

J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier series.
Math. Comput., 19:297–301, 1965.

J. G. de Boer. On the correlation function in time and space of wind-generated ocean waves.
Technical report, SACLANT ASW Research Centre, Tech. Rept. No. 160, 1968. URL http:

//oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0865249.

J. Dongarra and F. Sullivan. Guest editors introduction to the top 10 algorithms. Computing in
Science and Engineering, 2:22–23, 2000. doi: 10.1109/MCISE.2000.814652.

T. Elfouhaily, B. Chapron, K. Katsaros, and D. Vandemark. A unified directional spectrum for
long and short wind-driven waves. J. Geophys. Res., 102:15781–15796, 1997.

J. W. Goodman. Introduction to Fourier Optics, Second Edition. McGraw-Hill, 1996.

M. L. Heron, W. J. Skirving, and K. J. Michael. Short-wave ocean wave slope models for use in
remote sensing data analysis. IEEE Trans. Geosci. Rem. Sens., 44:1962–1973, 2006.

L. H. Holthuijsen. Waves in Oceanic and Coastal Waters. Cambridge University Press, 2007.

K. V. Horoshenkov, A. Nichols, S. J. Tait, and G. A. Maximov. The pattern of surface waves in a
shallow free surface flow. J. Geophys. Res. Earth Surf., 118:1864–1876, 2013.

P. A. Huang, D. W. Wang, E. J. Walsh, W. B. Krabill, and R. N. Swift. Airborne measurements
of the wavenumber spectra of ocean surface waves. Part II: Directional distribution. J. Phys.
Oceanogr., 30:2768–2787, 2000.

S. Kay, J. Hedley, S. Lavender, and A. Nimmo-Smith. Light transfer at the ocean surface modeled
using high resolution sea surface realizations. Optics Express, 19:6493–6504, 2011.

G. E. Latta and J. A. Bailie. On the autocorrelation functions of wind generated ocean waves.
Zeit. Angew. Math. Phys., 19:575–586, 1968.

103

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0865249
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0865249

M. S. Longuet-Higgins, D. E. Cartwright, and N. D. Smith. Observations of the directional spectrum
of sea waves using the motions of a flotation buoy. In Ocean Wave Spectra, pages 111–136. Prentice
Hall, 1963.

J. Makhoul. A fast cosine transform in one and two dimensions. IEEE Trans. Acoustics, Speech,
Signal Process., 28(1):27–34, 1980.

C. D. Mobley. HydroPol Mathematical Documentation: Invariant Imbedding Theory for the Vector
Radiative Transfer Equation. Technical report, Sequoia Scientific, Inc., Bellevue, WA 98075,
2014. URL http://www.oceanopticsbook.info/view/references/publications.

C. D. Mobley. Polarized reflectance and transmittance properties of windblown sea surfaces. Appl.
Optics, 54(15):4828–4849, 2015.

C. D. Mobley. Light and Water: Radiative Transfer in Natural Waters. Academic
Press, 1994. URL www.oceanopticsbook.info/view/introduction/level_2/text_books_

relevant_to_ocean_optics.

W. J. Pierson and L. Moskowitz. A proposed spectral form for fully developed wind seas based on
the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69:5181–5190, 1964.

R. W. Preisendorfer. Hydrologic Optics. U.S. Department of Commerce, Pacific Marine Envi-
ronmental Laboratory, 1976. URL www.oceanopticsbook.info/view/introduction/level_2/

text_books_relevant_to_ocean_optics. In 6 volumes; Volume VI treats surfaces.

W. H. Press, S. A. Teukolksy, W. T Vetterling, and B. P. Flanney. Numerical Recipes in Fortran:
The Art of Scientific Computing, Second Edition. Cambridge Univ. Press, 1992.

J. G. Proakis and D. G. Manolakis. Digital Signal Processing: Principles, Algorithms, and Appli-
cations, Third Edition. Prentice Hall, 1996.

A. Schuster. On the investigation of hidden periodicities with application to a supposed 26 day
period of meteorological phenomena. Terrestrial Magnetism, III:13–41, 1898.

G. Strang. Wavelets. Amer. Scientist, 82:250–255, 1994.

J. Tessendorf. Simulating Ocean Water. Technical report, SIGGRAPH Course Notes, 2004. URL
http://people.clemson.edu/~jtessen/reports.html.

104

http://www.oceanopticsbook.info/view/references/publications
www.oceanopticsbook.info/view/introduction/level_2/text_books_relevant_to_ocean_optics
www.oceanopticsbook.info/view/introduction/level_2/text_books_relevant_to_ocean_optics
www.oceanopticsbook.info/view/introduction/level_2/text_books_relevant_to_ocean_optics
www.oceanopticsbook.info/view/introduction/level_2/text_books_relevant_to_ocean_optics
http://people.clemson.edu/~jtessen/reports.html

	List of Figures
	List of Tables
	Mathematical Preliminaries
	Sinusoidal Wave Representations
	Continuous Fourier Transforms
	Sampling
	Discrete Fourier Transforms
	Alternate Formulations

	Parseval's Identity

	One-Dimensional, Time-Independent Surfaces
	Wave Energy
	Wave Spectra
	Surfaces to Variance Spectra
	Frequency Ordering
	Variance Spectra to Surfaces
	Theory
	Example: A Roundtrip Calculation

	Numerical Resolution

	Two-Dimensional, Time-Independent Surfaces
	Surfaces to Variance Spectra
	Example: A Random Sea Surface
	Example: A Sea Surface of Crossing Sinusoids

	Variance Spectra to Surfaces
	Theory
	Example: A Two-Dimensional Sea Surface

	Effect of the Spreading Function
	Resampling the DFT Grid for Ray Tracing
	Example: Reflectance by Different Surface Models
	Example: Tiling a Two-dimensional Surface

	Two-Dimensional, Time-Dependent Surfaces
	Autocovariance Functions and the Wiener-Khinchin Theorem
	Autocovariance
	The Wiener-Khinchin Theorem
	The Horoshenkov Autocorrelation Function
	The Horoshenkov Variance Spectrum

	Numerical Illustration of the Wiener-Khinchin Theorem
	Sampling Strategy and Computational Details
	Idle Speculations
	Lessons Learned

	Turbulence-generated Water Surfaces
	Two-dimensional Water Surfaces

	Computation of Discrete Fourier Transforms
	Example Calculations
	Timing

	Wave Spectra
	Overview of Wave Spectra
	The Pierson-Moskowitz Omnidirectional Gravity Wave Spectrum
	The Elfouhaily et al. Directional Gravity-Capillary Wave Spectrum
	Spreading Functions

	References

