
The Radiative Transfer Chapter derived the scalar radiative transfer equation (SRTE),
Eq. (3) of the Scalar Radiative Transfer Equation page:
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This equation governs the propagation of unpolarized monochromatic radiance at a particular
wavelength λ in a one-dimensional absorbing and scattering medium.

The question now arises: Is there a similar equation for the propagation of luminance?
It is to be anticipated that a luminance transfer equation may be more complicated than
the SRTE because it of necessity must involve all visible wavelengths and the response of
the human eye.

The Luminance Transfer Equation

To develop a luminance transfer equation, multiply Eq. (1) by the photopic luminosity
function Km y(λ) and integrate over all visible wavelengths. Let Λ denote the range of
wavelengths for which y(λ) > 0. The term on the left hand side of the SRTE then becomes
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where the luminance Lv is defined by Eq. (1) of the Photopic Luminosity Function page:

Lv ≡ Km
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The first term on the right hand side of the SRTE becomes
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This term does not give a product of an integral over wavelength of the beam attenuation
coefficient times the luminance. However, we can rewrite this term as{
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The term in braces is a radiance-weighted integral of the beam attenuation coefficient times
the photopic luminosity function y. If we define the photopic beam attenuation coefficient
cv as

cv(z, θ, φ) ≡
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then the −c L term of the SRTE maintains the same form, −cv Lv, in the luminance transfer
equation.

A similar treatment of the path radiance term of the SRTE leads to a definition for the
photopic volume scattering function:

βv(z, θ
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The source term in the SRTE leads to a photopic source term:

Sv(z, θ, φ) ≡ Km

∫
Λ

S(z, θ, φ, λ) y(λ) dλ .

Collecting the above results gives the desired luminance transfer equation:
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This equation governs the propagation of broadband luminance as seen by the human eye
in a one-dimensional absorbing and scattering medium. Equation (likesection4) is the basis
for the classical definition of contrast as used in visibility studies.

Dependence of cv on the Ambient Radiance

It is important to note that the photopic beam attenuation coefficient as defined in Eq.
(likesection2) depends on the ambient radiance distribution, hence on direction (θ, φ), even
though the beam attenuation c(z, λ) is an inherent optical property (IOP) that does not de-
pend on the ambient radiance or direction. Moreover, cv meets the definition of an apparent
optical property as defined on the Apparent Optical Properties page: it depends on the IOPs
of the medium (here the beam attenuation c) and on the ambient radiance distribution, and
it is insensitive to external conditions (e.g., rescaling L by a multiplicative factor does not
change the value of cv). The same holds true for the photopic volume scattering function
defined in Eq. (likesection3) and for any other IOP. Thus, in going from a monochromatic ra-
diative transfer equation to a luminance transfer equation, inherent optical properties become
apparent optical properties. This is the penalty to be paid for going from an equation for
monochromatic radiance as measured by instruments to an equation for luminance observed
by a human eye.

However, in practice, there seems to very little dependence of cv on the ambient radi-
ance (as would be expected for a “good” AOP). The left panel of Fig. figure1 shows the
beam attenuation c(λ) for a simulation of homogeneous Case 1 water with a chlorophyll
concentration of 0.5 mg m−3 (obtained using the new Case 1 IOP model in HydroLight).
The Sun was at a zenith angle of θsun = 40deg in a clear sky, which gives a transmitted solar
beam of about 29 deg in the water; that beam will lie in the HydroLight quad centered at
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Figure 1: Left panel: Total (including water) beam attenuation c(λ) for a chlorophyll concen-
tration of 0.5 mg m−3 (black curve), and the photopic luminosity function ȳ (green). Right
panel: Radiances at a depth of 10 m for the Sun at a zenith angle of 40 deg in a clear sky.
Lsun (red curve) is looking upward into the Sun’s refracted beam. Lu (purple) is the up-
welling (nadir-viewing) radiance; Ld (orange) is the downwelling (zenith-viewing) radiance;
and Lh90 (green) is the horizontal radiance in the direction perpendicular (azimuthal angle of
φ = 90deg) to the solar plane. Lu and Lh90 have been multiplied by 20 for better visibility in
the plot. Numbers at the right show the photopic beam attenuation cv for the four radiance
spectra.

θ = 30 deg. The right panel of Fig. figure1 shows the radiance at 10 meters depth looking in
four directions: looking upward into the Sun’s transmitted beam, looking in the nadir and
zenith directions, and looking horizontally at right angles to the solar plane.

The spectra in this figure were used to compute the photopic beam attenuation cv via Eq.
(likesection2). The values are all close to 0.31 m−1, which is close to the beam attenuation
at the peak of the photopic luminosity function: c(555 nm) = 0.313 m−1.

Figure figure2 shows the corresponding results for a chlorophyll concentration of 10mg m−3

and a 5 m depth. Again, the four different radiances give the same cv to within a fraction
of a percent, and these cv values are within one percent of the beam attenuation value
c(555 nm) = 2.573 m−1.

Figure figure3 shows a chlorophyll profile consisting of a background value of 0.5 mg m−3

plus a Gaussian that gives a maximum value of 5.5 mg m−3 at 10 m depth. For this profile,
an observer at 5 m depth looking upward would be looking into low-chlorophyll water, and
looking downward would be looking into high-chlorophyll water. An observer at 10 m depth
looking horizontally would be looking into high-chlorophyll water, but looking upward or
downward would be looking into lower chlorophyll, clearer water. It might be supposed
that the different IOPs (c(z, λ) values in particular) would give radiances that might give
significantly different cv values for the different viewing directions at a given depth.

However, this is not the case. Figure figure4 shows the radiances seen by an observer
at 15 m depth. Again, the cv values differ by only about one percent from the value of
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Figure 2: Same as for Fig. figure1, but for a chlorophyll concentration of 10 mg m−3 and a
5 m depth.

c(15 m, 555 nm) = 0.719 m−1. The same holds true at other depths (not shown).
Exhaustive simulations have not been made, so it might be possible to create a con-

trived water body for which the photopic beam attenuation would be significantly different
for different viewing directions, and for which cv(z) would be significantly different from
c(z, 555 nm). However, the above simulations indicate that in many situations of practical
interest, there is little dependence of cv on viewing direction, and that cv is within a percent
or so of the beam attenuation at the 555 nm wavelength of the maximum of the photopic
luminosity function.

These simulations are consistent with the results of Zaneveld and Pegau (2003), who
found that the beam attenuation coefficient at 532 nm (excluding the water contribution) is
a good proxy for the photopic beam attenuation.
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Figure 3: The chlorophyll profile used in the simulations of Fig. figure4.

Figure 4: Same as for Fig. figure1, but for the depth-dependent chlorophyll profile seen in
Fig. figure3 and a 15 m depth.
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