
Thematic mapping refers to the determination and display of a particular type of infor-
mation (the theme). In terrestrial and oceanic remote sensing, a common theme is the type
of surface material. On land, a thematic map might display the land areas covered by forest,
grassland, water, crops, bare soil, pavement, etc. In shallow waters, the thematic map might
distinguish bottom areas covered by mud, sand, rock, sea grass, coral, etc. Much work has
been done recently on mapping bathymetry, bottom type, and water IOPs as extracted from
hyperspectral imagery. This page compares the supervised classification technique used for
terrestrial thematic mapping with spectrum matching techniques (e.g., Mobley et al. (2005);
Dekker et al. (2011)) for shallow-water mapping of bottom type.

The simultaneous retrieval of bathymetry, bottom classification, and water IOPs is a
much more difficult task than traditional thematic mapping to determine land surface type,
as used in terrestrial remote sensing. In terrestrial thematic mapping, only the type of land
surface must be deduced from an atmosphericly corrected image spectrum; there are no
confounding influences by water IOPs and depth. We will see that terrestrial techniques for
supervised classification are not well suited to the oceanic problem because of the additional
complications of bottom depth and water optical properties, neither of which are present in
terrestrial remote sensing.

Supervised Classification

In supervised classification the object is to associate a given image spectrum with one of
several pre-determined classes of spectra. In terrestrial remote sensing these classes are
typically defined as soil, grass, trees, water, pavement, etc. A thematic map of earth surface
features is then generated by classifying the spectrum from each image pixel into one of the
pre-determined classes.

One approach to supervised classification is to compute the mean spectrum for each class
and a corresponding covariance matrix that defines the “size” of each class of spectra about
its mean. The image spectrum is then compared only with the mean spectrum and size for
each class, and the image spectrum is statistically associated with the class it is most likely
to belong to according to some metric for distance between the image and mean spectra and
user-specified assumptions about the statistical properties of the class members.

This page considers the terrestrial and oceanic problems in more detail and shows that
the standard terrestrial thematic mapping methodology based on supervised classification is
not easily applied to the ocean remote sensing problem.

Covariance and Correlation Matrices

Consider a collection of N remote sensing reflectance spectra Rrs, each with K wavelengths,
which we denote by Rn(λk), n = 1, ..., N and k = 1, ..., K (dropping the rs subscript on Rrs

for convenience). The spectra can be regarded as column vectors:
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Rn =


Rn(λ1)
Rn(λ2)

...
Rn(λK)

 = [Rn(λ1), Rn(λ2), . . . , Rn(λK)]T , (1)

where bold type indicates a vector or matrix, and superscript T indicates transpose. In the
spectrum matching technique described previously, these spectra are the database spectra,
N is usually 105 or more, and K would be 75 for spectra from 380 to 750 nm with 5 nm
resolution. Let

I = [R(λ1), R(λ2), . . . , R(λK)]T

be the image spectrum that is to be classified.
Now consider subsets of the entire database that define various classes of spectra. To be

specific in the illustrative computations below, we chose four classes of spectra: Rrs for 10
sand and sediment spectra seen through 0.01 m of water, 10 coral spectra seen through 0.01
m of water, and the same sand and coral spectra seen through 10 m of the same water. The
water IOPs were based on measurements of the very clear water in the Bahamas. The sand
and sediment spectra range from clean ooid sand to heavily biofilmed, darker sand. The coral
spectra are different species of corals. Figure figure1 shows the individual spectra in these
four classes. To minimize the array sizes for the printout of Table 1 below, we subsampled
the spectra to wavelengths of 400, 450, ..., 650, 700 nm, so that K = 7. The subsampled
spectra are shown in Fig. figure2.

Figure 1: Example database Rrs spectra defining the four classes; each class has 10 spectra.

These spectra are obviously correlated in wavelength. The amount of correlation between
one wavelength and another is quantified by the covariance and correlation matrices, which
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Figure 2: The spectra of Fig. figure1 as re-sampled at 50 nm intervals for use in the
illustrative computations (light lines). The heavy lines are the class mean spectra.

are computed as follows. Let m = 1, ...,M label the class, with M being the total number
of classes (here 4). Class m contains Nm spectra (here, Nm = 10 for each class). Then the
mean or average spectrum for each class is defined by

Rm(λi) =
1

Nm

Nm∑
n=1

Rn(λi) , (2)

where the sum is over the spectra belonging to class m. In vector notation this is

Rm =
1

Nm

Nm∑
n=1

Rn . (3)

The mean spectra for the example four classes are shown by the heavy lines in Fig. figure2.
The elements of the K ×K class covariance matrices Σm are defined by

Σm(i, j) =
1

Nm − 1

Nm∑
n=1

[Rn(λi)−Rm(λi)][Rn(λj)−Rm(λj)] . (4)

Σm(i, j) expresses the covariance of the class spectra at wavelength λi with λj; Σm(i, i) is
the variance of the class spectra at λi. For remote-sensing reflectance spectra Rrs with units
of sr−1, the units of Σm(i, j) are sr−2. If we arrange the spectrum column vectors for class
m in a K ×Nm matrix with the class mean removed,

R(m) =

 R1(λ1)−Rm(λ1)& · · ·&RNm(λ1)−Rm(λ1)
...& · · ·&...

R1(λK)−Rm(λK)& · · ·&RNm(λK)−Rm(λK)

 , (5)
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then the covariance matrix for class m can be compactly written as

Σm =
1

Nm − 1
R(m)R

T
(m) . (6)

The elements of the K × K correlation matrix ρm for class m are defined from the class
covariance matrix Σm by

ρm(i, j) =
Σm(i, j)√

Σm(i, i)Σm(j, j)
. (7)

Table 1 shows the class covariance and correlation matrices computed by these equations
for the four classes of spectra shown in Fig. figure2.

Table 1. Covariance and correlation matrices for the four classes of spectra seen in Fig.
figure2. Wavelength 1 (400 nm) is at the upper left and wavelength 7 (700 nm) is at the
lower right of each array. Units for Σ are sr−2; ρ is non-dimensional.

&Σ(sand at 0.1 m) =

&



2.462e−4&3.049e−4&3.612e−4&3.797e−4&4.141e−4&3.994e−4&3.625e−4
3.049e−4&4.547e−4&5.361e−4&5.447e−4&5.712e−4&5.639e−4&4.569e−4
3.612e−4&5.361e−4&6.338e−4&6.462e−4&6.787e−4&6.692e−4&5.449e−4
3.797e−4&5.447e−4&6.462e−4&6.658e−4&7.046e−4&6.912e−4&5.780e−4
4.141e−4&5.712e−4&6.787e−4&7.046e−4&7.546e−4&7.364e−4&6.340e−4
3.994e−4&5.639e−4&6.692e−4&6.912e−4&7.364e−4&7.230e−4&6.179e−4
3.625e−4&4.569e−4&5.449e−4&5.780e−4&6.340e−4&6.179e−4&5.856e−4



&ρ(sand at 0.1 m) =

&



1.000&0.911&0.914&0.938&0.961&0.947&0.955
0.911&1.000&0.999&0.990&0.975&0.983&0.885
0.914&0.999&1.000&0.995&0.981&0.989&0.894
0.938&0.990&0.995&1.000&0.994&0.996&0.926
0.961&0.975&0.981&0.994&1.000&0.997&0.954
0.947&0.983&0.989&0.996&0.997&1.000&0.950
0.955&0.885&0.894&0.926&0.954&0.950&1.000



&Σ(coral at 0.1 m) =

&



5.793e−5&4.952e−5&6.378e−5&1.143e−4&1.389e−4&1.129e−4&1.552e−4
4.952e−5&4.442e−5&6.222e−5&1.080e−4&1.299e−4&1.059e−4&1.417e−4
6.378e−5&6.222e−5&1.070e−4&1.712e−4&2.007e−4&1.655e−4&2.057e−4
1.143e−4&1.080e−4&1.712e−4&3.010e−4&3.578e−4&2.961e−4&3.775e−4
1.389e−4&1.299e−4&2.007e−4&3.578e−4&4.432e−4&3.774e−4&4.950e−4
1.129e−4&1.059e−4&1.655e−4&2.961e−4&3.774e−4&3.300e−4&4.306e−4
1.552e−4&1.417e−4&2.057e−4&3.775e−4&4.950e−4&4.306e−4&6.132e−4


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&ρ(coral at 0.1 m) =

&



1.000&0.976&0.810&0.865&0.867&0.817&0.823
0.976&1.000&0.903&0.934&0.926&0.875&0.859
0.810&0.903&1.000&0.954&0.922&0.881&0.803
0.865&0.934&0.954&1.000&0.980&0.940&0.879
0.867&0.926&0.922&0.980&1.000&0.987&0.949
0.817&0.875&0.881&0.940&0.987&1.000&0.957
0.823&0.859&0.803&0.879&0.949&0.957&1.000



&Σ(sand at 10 m) =

&



5.792e−7&2.174e−6&3.341e−6&1.880e−6&4.235e−8&2.783e−9&2.886e−12
2.174e−6&1.006e−5&1.542e−5&8.357e−6&1.805e−7&1.214e−8&1.047e−11
3.341e−6&1.542e−5&2.369e−5&1.288e−5&2.785e−7&1.872e−8&1.645e−11
1.880e−6&8.357e−6&1.288e−5&7.086e−6&1.545e−7&1.033e−8&9.641e−12
4.235e−8&1.805e−7&2.785e−7&1.545e−7&3.409e−9&2.267e−10&2.151e−13
2.783e−9&1.214e−8&1.872e−8&1.033e−8&2.267e−10&1.517e−11&1.457e−14
2.886e−12&1.047e−11&1.645e−11&9.641e−12&2.151e−13&1.457e−14&2.776e−17



&ρ(sand at 10 m) =

&



1.000&0.900&0.902&0.928&0.953&0.939&0.720
0.900&1.000&0.999&0.990&0.975&0.983&0.626
0.902&0.999&1.000&0.994&0.980&0.987&0.641
0.928&0.990&0.994&1.000&0.994&0.996&0.687
0.953&0.975&0.980&0.994&1.000&0.997&0.699
0.939&0.983&0.987&0.996&0.997&1.000&0.710
0.720&0.626&0.641&0.687&0.699&0.710&1.000



&Σ(coral at 10 m) =

&



1.956e−7&5.520e−7&9.484e−7&9.105e−7&2.255e−8&1.305e−9&1.714e−12
5.520e−7&1.638e−6&3.068e−6&2.868e−6&7.055e−8&4.100e−9&4.858e−12
9.484e−7&3.068e−6&7.054e−6&6.135e−6&1.484e−7&8.731e−9&8.282e−12
9.105e−7&2.868e−6&6.135e−6&5.845e−6&1.424e−7&8.393e−9&9.001e−12
2.255e−8&7.055e−8&1.484e−7&1.424e−7&3.620e−9&2.197e−10&2.322e−13
1.305e−9&4.100e−9&8.731e−9&8.393e−9&2.197e−10&1.372e−11&1.359e−14
1.714e−12&4.858e−12&8.282e−12&9.001e−12&2.322e−13&1.359e−14&2.221e−17


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&ρ(coral at 10 m) =

&



1.000&0.975&0.807&0.852&0.847&0.797&0.823
0.975&1.000&0.903&0.927&0.916&0.865&0.805
0.807&0.903&1.000&0.955&0.928&0.888&0.662
0.852&0.927&0.955&1.000&0.979&0.937&0.790
0.847&0.916&0.928&0.979&1.000&0.986&0.819
0.797&0.865&0.888&0.937&0.986&1.000&0.778
0.823&0.805&0.662&0.790&0.819&0.778&1.000


These specific examples make it clear that

• For a given class, Rrs at one wavelength is highly correlated with Rrs at another
wavelength, as expected.

• The covariance and correlation matrices are different for each class. These matrices
depend not only on bottom type (sand vs coral) but also on bottom depth (and water
IOPs, not explicitly shown here). In other words, the wavelength covariances carry
information about both bottom type and water depth and IOPs.

Spectrum Matching vs. Statistical Classification

One metric for comparing two spectra is the simple Euclidean metric, which measures the
squared distance (in units of sr−2) between an image spectrum I and each Rm in the database:

D2
E(m) =

K∑
i=1

[I(λi)−Rm(λi)]
2 = [I−Rm]T[I−Rm] (8)

The spectrum Rm giving the minimum distance D2
E(m) of all N database spectra determines

the closest match to the image spectrum I. Note that this is not a statistical estimate in
the sense that no probability model is involved. Note also that the image spectrum is being
compared with every spectrum in the database, not just with pre-defined class mean spectra.

In traditional thematic classification, an image spectrum I is compared only with the
mean spectrum and “size”’ for each class, as expressed by the class mean Rm and covariance
Σm. Here “size” is used in the sense that the variances and covariances in Σm are larger
when the spread of Rrs spectra is greater. Inspect, for example, the elements of Σm for the
class of sand at 0.01 m compared to sand at 10 m, for which the spectra are all much closer
together (especially at blue and red wavelengths) and thus have smaller covariances. The
class covariance matrix defines the size of the “swarm of points” surrounding the centroid
(mean class spectrum) representing the class in K -dimensional Rrs space. The image spec-
trum is assigned to a particular class according to a statistical model (often based on the
assumption of a multivariate normal distribution of the swarm of points) that determines
the probability that the image spectrum belongs to a particular the swarm of points defining
a given class. The class spectra (K -dimensional swarms of points) generally overlap, so that
an unambiguous, non-probabilistic association of I with a given class is not possible.
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In maximum likelihood estimation (MLE; see Richards and Jia (1996) for an excellent
discussion of this whole business), the distance metric is

D2
MLE(m) = ln |Σm|+ [I−Rm]T Σ−1

m [I−Rm] , (9)

where |Σm| denotes the determinant of Σm and Σ−1
m denotes the inverse. |Σm| and Σ−1

m

are of course pre-computed for each class before doing the spectrum matching. The image
spectrum I is assigned to the class m having the smallest value of D2

MLE(m). Note that now
the image spectrum is compared only with the class mean spectra Rm. The assignment of
the image spectrum to a particular class is based on its closeness to the class mean and
the spread of the “swarm of points” surrounding the mean, as described by the covariance
matrix. This metric involves matrix multiplication, which is computationally expensive, but
the number of classes is generally small, so in practice this may not be a problem.

It is often said that the incorporation of Σm into the distance metric “removes the effect
of correlations between wavelengths.” This interpretation of the effect of Σm relates to
the fact that covariance matrices are the foundation of principle component analysis (PCA;
see Preisendorfer (1988)). In PCA the original independent, physical variables (here, the
wavelengths) are transformed to obtain a new set of (generally unphysical) independent
variables for which the data are uncorrelated. This transformation can be viewed as a
rotation of the axes of the original, physical data space (here the wavelength axes used for
plots in K -dimensional space) to generate new (generally unphysical) axes for which the
data are uncorrelated.

If the class covariances are equal (or assumed to be equal), then ln |Σm| is the same for
each class and can be ignored. The MLE metric then reduces to the Mahalanobis distance
metric,

D2
M(m) = [I−Rm]T Σ−1 [I−Rm] , (10)

where Σ is the common value of Σm. The image spectrum I is then assigned to the class m
having the smallest value of D2

M(m).
We have seen by the specific examples of Fig. figure2 and Table 1 that the covariance

matrices are different for different classes of the sort that are relevant for ocean-bottom
remote sensing. Indeed, Table 1 shows that the elements of the Σm can change by orders
of magnitude as a function of water depth. This inequality of the Σm for different classes
precludes use of the Mahalanobis metric for classes as defined here. For the retrievals needed
for shallow-water mapping of bottom type, MLE (or something else) would have to be used
with a different covariance matrix for each class.

However, it is not at all clear how meaningful classes should be defined for simultaneous
retrievals of bottom type, water column IOPs, and bottom depth. Should one class be “sand
spectra at 5.25 m depth with a particular set of water absorption, scattering, and backscatter
spectra,” and another class be “sand spectra at 5.25 m depth with the same absorption and
scattering spectra but a different backscatter fraction,” and another class be “sand spectra at
5.50 m with the first set of IOPs,” and then another class be “sea grass spectra at 7.50 m with
yet another set of IOPs,” and so on? If so, then the number of classes quickly becomes as
large as the number of depths, IOP sets, and pre-chosen classes of bottom type (sand, coral,
sea grass, etc.). A database generated as previously described easily could have hundreds or
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thousands of classes (a database often has 50-100 bottom depths, several dozen to several
hundred sets of IOPs, and more than 100 bottom reflectance spectra). With such a large
number of classes, the validity of doing traditional thematic mapping becomes uncertain,
not to mention the additional computational costs involved with the matrix multiplications.

Clearly spectrum matching for shallow-water applications addresses a much more com-
plicated problem than classic terrestrial thematic mapping, which corresponds to retrieval
of bottom type if there were no water present, i.e. no simultaneous retrieval of depth and
IOPs. Because of the greater complexity of the oceanographic retrieval problem, and because
of the difficulty in defining meaningful classes, shallow-water spectrum matching does not
use statistical classification techniques such as MLE. The spectrum matching approach of
Mobley et al. (2005) does not compare an image spectrum to a class mean spectrum. In
that technique, an image spectrum is compared to every spectrum in a database to find the
closest match by the chosen (Euclidean or some other) metric, which is appropriate in this
case. In a manner of speaking, each database Rrs spectrum is a separate class corresponding
to a particular depth, bottom reflectance spectrum, and set of IOPs. In such a situation
(only one member in each class) the covariance matrix is undefined.

Moreover, for the present problem it is not even desirable to remove the effects of wave-
length correlations, as can be done with the MLE or Mahalanobis metrics, because the
wavelength correlations carry information that is critical to separating depth and IOPs ef-
fects from bottom type effects.

The spectrum-matching approach of Mobley et al. (2005) for shallow-water benthic
mapping therefore avoids defining predetermined classes and finds the closest match from
the entire database. This gives the highest possible resolution (in depth, bottom type, and
water IOPs) of retrievals. This approach retrieves a particular bottom reflectance spectrum
(which represents a particular bottom type), not just a generic bottom type such as sand
or coral. If the user later wishes to group the particular spectra for the retrieved bottom
types into broader classes such as corals vs. sediments, or to group the retrieved IOPs
into low, medium, and high absorption bins, for example, then that is easily done from the
full-resolution retrieval.

8


