
This page illustrates the generation of random water surfaces beginning with the analyt-
ical autocovariance function of Horoshenkov et al. (2013),
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This particular autocovariance has an analytical spectrum,
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which was computed on the Autocovariance Functions: Theory page. Thus, for surface gen-
eration, the two-sided spectrum of Eq. (2) simply replaces the two-sided Pierson-Moskowitz
spectrum used on the previous page, and the surface-generation calculations proceed as de-
scribed in the previous pages. The autocovariance function is then not needed. However, if
only the autocovariance is known or measured, then the needed variance spectrum must be
obtained via the Wiener-Khinchin theorem. In the present study, knowing both the auto-
covariance and the spectral density as analytical functions provides a powerful check on the
discrete numerical calculations of the same quantities.

The application of the above results is straightforward. If only the autocorrelation,
rather than the autocovariance, is given, then a separate value of the surface elevation
variance must be known. For the Horoshenkov study, a typical value of the surface variance
is Czz(0) = 2.5 × 10−7 m2. (This is extremely small by oceanographic standards, but the
surface waves in the Horoshenkov laboratory experiment had amplitudes of order 1 mm.)
The previously cited parameter values of σw = 0.22 m and Lo = 0.17 m are used here. Since
the characteristic spatial scales of σw and Lo are of order 0.2 m, a spatial region of length
L = 4 m should be adequate to capture the spatial features of these surfaces. An N value
of 1024 then gives the smallest resolvable wavelength as 2∆x ≈ 0.8 cm, which is the scale
of capillary waves. (Capillary waves have wavelengths in the range of a few millimeters to 2
cm.)

Figure figure1 shows an example simulation based on the Horoshenkov variance spectrum
(2). The layout is the same as for the Pierson-Moskowitz figures on the previous pages. Panel
(d) of the figure contains three autocovariance plots: The green curve is the inverse DFT of
the sampled variance spectrum, which is shown in green in Panel (b). The red curve is the
ensemble average autocovariance of 1000 water surface simulations. The purple curve is the
theoretical autocovariance of Eq. (1). These three curves are indistinguishable at the scale
of this plot. This nearly perfect agreement between autocovariance derived in three different
ways indicates that the various numerical calculations are almost without doubt being done
correctly.

The red curve in Panel (e) of the plot shows the variance spectrum derived via the Wiener-
Khinchin theorem as the DFT of the ensemble-average autocovariance (the red curve in Panel
(d)). Again, this curve is almost indistinguishable from the theoretical autocovarinace, which
is shown in green. Again, this agreement indicates that the DFTs are being computed
correctly.
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Figure 1: Example of a turbulence-generated water surface based on the autocovariance
function of Eq. (1). Compare the qualitative appearance of panel (c) with the sea surface
shown in the first figure on page Autocovariance Functions: Numerical Example. Generated
by IDL routine WienerKhinchin Horo nu.pro.
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Two-dimensional Water Surfaces

The IDL codes used on previous pages for generation of two-dimensional, time-independent
water surfaces are formulated using a one-sided, two-dimensional elevation variance spectrum
Ψ(kx, ky) of the form (recall Eq. 4 of the Wave Variance Spectra: Examples)

Ψ(kx, ky) =
1

k
S1s(k)Φ(k, ϕ) . (3)

Here S1s(k) is a one-sided omnidirectional spectrum and Φ(k, ϕ) is a nondimensional spread-
ing function. To generate a 2-D, time-independent surface using the Horoshenkov model,
the two-sided omnidirectional spectrum of Eq. (??) is multiplied by 2 to obtain a one-
sided spectrum, which the IDL code evaluates only for the non-negative kx values, i.e. for
−π/2 ≤ ϕ ≤ π/2. The code then divides the result by 2 to get a two-sided spectrum and
evaluates the −kx half plane of values by symmetry. Thus it is easy to replace an omnidi-
rectional oceanographic S1s(k) spectrum with that of Horoshenkov. There remains only the
issue of what to use for a spreading function. There is no information about the spreading
functions of turbulence-generated waves in the Horoshenkov et al. paper. There is no doubt
some flow-induced difference in the waves in the “down-river” vs “cross-river” directions,
just as there is in the “down-wind” vs “cross-wind” directions for wind-generated waves.
However, pending further information on that difference, it is probably reasonable to use a
frequency-independent, isotropic spreading function, Φ(ν, ϕ) = 1

2π
. With that assumption,

two-dimensional surfaces can be generated.
Figure figure2 shows an example two-dimensional, turbulence-generated surface created

with the σw = 0.22 m, Lo = 0.17 m and Czz(0) = 2.5× 10−7 m2 values used for Fig. figure1.
This particular 2-D surface realization has an elevation variance of 2.48 × 10−7 m2, which
is close to the value of Czz(0) value used as input to the Horoshenkov spectrum. It is also
noted that along any slice through the surface, there are about two dozen “bumps” in 4 m,
just as seen in the 1-D surface realization of Fig. figure1. Figure figure3 shows the slice
through the 2-D surface at y = 2. This surface is qualitatively like that of the middle panel
of Fig. figure1. These results indicate that the 2-D calculations are correct.

The visual appearance of the Horoshenkov surface is strikingly different from the wind-
generated sea surface seen in Fig. figure4, which is for a 5 m s−1 wind speed. In these
plots, the surfaces have a factor-of-8 difference in the scaling of the surface elevation relative
to the horizontal: 0.02 m vertical to 4 m horizontal = 0.005 for the Horoshenkov surface
compared 4 m to 100 m = 0.04 for the wind-blown surface. This is purely for the visual
appearance of the 3D perspective plots. The Horoshenkov surface is actually quite smooth,
with an average wave facet slope of only about 0.6 deg. The wind-blown surface has an
average slope angle of about 3.7 deg in the along-wind direction and 2.9 deg in the cross-
wind direction. (Keep in mind that for this simulation ∆x = 100/1024, so the smallest
resolvable wave has a wavelength of about 20 cm. Thus the smallest waves, which can have
large slopes, are not resolved. An actual sea surface will therefore have larger average slopes.)
Thus the Horoshenkov surface is smoother than the wind-blown surface, which suggests that
turbulence-generated water surfaces may have significantly different optical reflectances than
wind-generated surfaces. That hypothesis could be tested by ray tracing calculations based
on surfaces like those of Figs. figure2 and figure4.
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Figure 2: A 2-D turbulence-generated surface. White is large positive surface elevations
(wave crests) and dark blue is large negative values (wave troughs).

Figure 3: A slice through the surface of Fig. figure2 at y = 2.
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Figure 4: A wind-generated surface for a wind speed of 5 m s−1. Compare with Fig. figure2.
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