
The preceding pages have described the statistical properties of random sea surfaces using
variance spectra. This page begins the exploration of an alternate path to the specification of
surface roughness properties. Clearly, wind-dependent variance spectra are applicable only
to surface waves that are generated by wind. Consider, however, the surface of a flowing river.
The river’s surface can have ripples or waves generated by turbulence resulting from unstable
shear flow induced by flow over a shallow bottom, or by eddies created as the water flows
around rocks in the river. These water surfaces do not depend on the wind speed and can
have different statistical properties, hence different optical properties, than wind-roughened
water surfaces. Such surfaces can be described by their autocovariance functions.

Autocovariance functions can be converted to elevation variance spectra via the Wiener-
Khinchin theorem. This page shows how that is done. Once a given autocovariance function
has been converted to its equivalent elevation variance spectrum, the algorithms of the
previous chapters are immediately applicable, even though the variance spectrum is not wind-
dependent. Indeed, this conversion enables the Fourier transform methods of the previous
chapters to be used to generate random realizations of any surface, not just water surfaces.

As is often the case, there is a large gap between textbook theory—usually developed
for continuous variables or an infinite sample size of discrete values—and its implementation
in a computer program for a finite sample size of discrete variables. In particular, careful
attention must be paid to sampling of an autocovariance function in order to obtain the
corresponding variance spectrum, or vice versa. I find it disappointing and frustrating (but
not surprising) that numerical matters such as the effects of finite sample size, maximum
lag size, and exactly how to sample spectra or autocovariances (in particular, the material
on page Autocovariance Functions: Sampling) never seems to be mentioned in textbooks
on digital signal processing or related subjects. It is left to the innocent student to spend
a few weeks of unfunded time figuring out why various numerical results are not internally
consistent or do not perfectly match the textbook theory.

This page begins with a discussion of autocovariances, and then the Wiener-Khinchin
theorem is stated. The theorem is numerically illustrated on the next page first using the
wind-dependent Pierson-Moskowitz elevation variance spectrum, for which certain values can
be analytically calculated and used to check the numerical results. The modeling of water
surfaces generated by shear-induced turbulence is then illustrated, again using analytical
functions that allow for a rigorous check on the numerical results.

Autocovariance

The autocovariance Czz(`) of z(r) is defined as

Czz(`) ≡ E{z(r)z(r + `)} , (1)

where E denotes statistical expectation and ` is the spatial lag. This definition in terms of
the expectation holds for both continuous and discrete variables. For the present discussion
with z(r) being sea surface elevation, Czz(`) shows how strongly the sea surface elevation at
one location is correlated to the elevation at a distance ` away. Czz(`) has units of m2, and
Czz(` = 0) is the variance of the surface elevation. The autocovariance is an even function
of the lag: Czz(−`) = Czz(`).
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Consider an infinite sample of discrete zero-mean surface elevations spaced a distance ∆x
apart. The autocovariance is then computed by (e.g., Eq. 2.6.3 of Proakis and Manolakis
(1996) with a minor change in their notation)

Czz(`) =
+∞∑
r=−∞

z(r)z(r + `), for ` = 0,±1,±2, ... .

Here ` is indexing the lag distance in units of the sample spacing ∆x. For a finite sample of
N discrete values, the same authors define the sample autocovariance by (their Eq. 2.6.11)

Czz(`) =

N−|`|−1∑
r=0

z(r)z(r + `) . (2)

As usual, there are competing definitions. For a finite sample of N discrete values, perhaps
with a non-zero mean m, the IDL autocorrelation function (A CORRELATE) uses

Czz(`r) =
1

N

N−|`|−1∑
r=0

[z(r)−m][z(r + `)−m] for − (N − 2) ≤ `r ≤ N − 2 , (3)

where

m =
1

N

N∑
r=0

z(r)

is the sample mean. Matlab computes the autocovariance via

Czz(`) =
1

N − 1

N−|`|−1∑
r=0

[z(r)−m][z(r + `)−m] .

Note that the lag must be less than the length of the sample. (That is, the sample locations
are at xr = r∆x, r = 0, ..., N−1 and the allowed lag distances are `r = r∆x, r = 0, ..., N−2.)
Note also the factor of 1/N in the IDL definition (likesection3), which does not appear in
Eq. (likesection2), and which is a factor of 1/(N − 1) in the Matlab version.

Nor is there even any consensus on the terms “autocovariance” and “autocorrelation.”
Some authors (and this page) define the nondimensional autocorrelation ρzz(`) as the auto-
covariance normalized by the variance, i.e.

ρzz(`) ≡
Czz(`)

Czz(0)
. (4)

However, Proakis and Manolakis (1996) call the autocovariance as used here the autocorrela-
tion, and they call the autocorrelation of Eq. (likesection4) the “normalized autocorrelation.”
These sorts differences in the definitions and computations of autocovariances can can cause
much grief when comparing the numerical outputs of different computer codes, or numerical
outputs with textbook examples.
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The Wiener-Khinchin Theorem

Now that the autocovariance has been defined, the Wiener-Khinchin theorem can be stated:
The Fourier transform of the autocovariance equals the variance spectral density function.
Symbolically,

Fν{Czz(`)} = S2s(ν) . (5)

Indeed, some texts define the spectral density as the Fourier transform of the autocovariance.
The inverse is of course

F−1ν {S2s(ν)} = Czz(`) . (6)

Here S2s is a two-sided spectral density function as discussed on several previous pages (e.g.,
Surfaces to Spectra: 1D).

It is important to note (as emphasized by the ν subscript on the Fourier transform
operator F) that the theorem is written with the ν version of the Fourier transform (Eq. 1
of the Fourier Transforms page), and the density function is written in terms of the spatial
frequency ν, which has units of 1/meters. (In the time domain, the conjugate variables are
time t in seconds and frequency f in 1/seconds = cycles/second = Hz.) The spectral density
function for the angular spatial frequency k = 2πν (or angular temporal frequency ω = 2πf
in radians per second in the time domain) can be obtained by noting that corresponding
intervals of the spectral densities contain the same amount of variance:

S2s(k)dk = S2s(ν)dν ,

which gives

S2s(k) =
1

2π
S2s(ν = k/2π) . (7)

Note that ` varies from −∞ to +∞ and, likewise, ν or k ranges over all negative and positive
values. The variance spectrum obtained from the Fourier transform of an autocovariance
function is therefore a two-sided spectrum.

Comment: In light of Eq. (likesection7), the theorem stated in terms of angular spatial
frequency k appears to be

Fk{Czz(`)} = 2πS2s(k) , (8)

with the inverse

F−1k {S2s(k)} =
1

2π
Czz(`) . (9)

I say “appears to be” because I’ve never actually seen the theorem written this way because
the textbooks all seem to stick with x and ν (or t and f in the time domain). As Press et
al. (1992) say in Numerical Recipes (p. 491), “There are fewer factors of 2π to remember
if you use the (ν or) f convention, especially when we get to discretely sampled data....” In
any case, Eqs. (likesection8) and (likesection9) are consistent with the k spectrum of Eq.
(equation17) discussed below.

The theorem is usually proved in textbooks for continuous variables x and ν. However,
in numerical application to a finite number of discrete samples, discrete variables xr and νu
or ku are used, and proper attention must be paid to pesky factors of N , 2π, and bandwidth,
and to the array ordering required by a particular FFT routine.
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The continuous-variable Fourier transform in Eq. (likesection5) gives a spectral density
S2s(ν) with units of m2/(1/m). However, if the theorem is written for a DFT of discrete
data Czz(`r) = Czz(r),

Dν{Czz(r)} = S2s(νu) , (10)

then the resulting discrete spectrum S2s(νu) = S2s(u) has units of m2. Just as was discussed
on the Fourier Transforms page, this discrete spectrum must be divided by the bandwidth
∆ν in order to obtain the density at ν = νu. That is,

S2s(ν = νu) = S2s(u)/∆ν . (11)

Example

Horoshenkov et al. (2013) (their Eq. 4) give an analytic formula for the autocorrelation
function of surface waves generated by bottom-induced turbulence in shallow flowing water.
In the notation of this page, this function is

ρzz(`) = exp

(
− `2

2σ2
w

)
cos

(
2π

Lo
`

)
. (12)

In their words, “σw relates to the spatial radius of correlation (correlation length)” and “Lo
relates to the characteristic period in the surface wave pattern.” The average values for the
physical conditions of the Horoshenkov et al. study are σw = 0.22 m and Lo = 0.17 m.
[Note: Eq. (likesection12) is Horoshenkov’s W (ρ) as shown in their abstract and in their
conclusions, where it has a factor of 1/2 in the exponential. Their Eq (4) does not have the
1/2. This is probably a typo since Gaussians usually have the form exp[−x2/(2σ2)].]

This autocorrelation function provides a nice example of how to use the Wiener-Khinchin
theorem to obtain the corresponding variance spectrum. Equation (likesection12), when
converted to an autocovariance via a factor of the variance, 〈z2〉 = Czz(0), has the form

Czz(`) = &Czz(0) exp

(
− `2

2σ2
w

)
cos

(
2π

Lo
`

)
= &Czz(0) exp

(
−a2`2

)
cos(qo`) , (13)

where a = 1/(
√

2σw) and qo = 2π/Lo. This function has an easily computed analytical
Fourier transform.

The continuous-variable Fourier transform of this Czz(`) is given by Eq. (1) of the Fourier
Transforms page:

S2s(ν) = Fν{Czz(`)} =

∫ ∞
−∞

Czz(`) e
−i2πν` d` . (14)

Here ` and ν are continuous variables; S2s(ν) has units of m3, which is interpreted as
m2/(1/m) as explained before. Note that this variance spectral density is two-sided, i.e.,
∞ < ν <∞. Expanding the complex exponential via e−iθ = cos θ − i sin θ gives

S2s(ν) = &

∫ ∞
−∞

Czz(0) exp
(
−a2`2

)
cos(qo`) cos(2πν`) d`

−&i

∫ ∞
−∞

Czz(0) exp
(
−a2`2

)
cos(qo`) sin(2πν`) d` .
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The imaginary term is zero because the integrand is an odd function of `. Using the identity

cosx cos y =
1

2
[cos(x+ y) + cos(x− y)]

gives

S2s(ν) = 2Czz(0)

∫ ∞
0

exp
(
−a2`2

) 1

2
{cos[(2πν + qo)`] + cos[(2πν − qo)`]} d` .

The integral ∫ ∞
0

exp
(
−a2`2

)
cos(b`) d` =

√
π exp[−b2/(4a2)]

2a

gives the Fourier transform of the Czz(`) of Eq. (likesection13):

S2s(ν) =

√
π

2
σwCzz(0)

{
exp

[
−1

2
(2πσw)2(ν + 1/Lo)

2

]
+ exp

[
−1

2
(2πσw)2(ν − 1/Lo)

2

]}
.

(15)
This variance spectrum has maxima at ν = ±1/Lo, where the value is very close to

√
π
2
σwCzz(0).

Figure figure1 plots this Czz(`) (Eq. likesection13) and S2s(ν) (Eq. likesection15) for typical
values of σw = 0.22 m, Lo = 0.17 m, and Czz(0) = 2.5× 10−7 m2. Note that the sub peaks of
the autocovariance lie at integer multiples of ±Lo, and that the peaks of the spectrum are
at ±1/Lo.

By definition, the integral over all frequencies of an elevation variance spectral density
gives the total elevation variance 〈z2〉:

〈z2〉 =

∫ ∞
−∞
S2s(ν)dν .

This can be computed analytically for the spectrum of Eq. (likesection15). The S2s(ν)
spectrum of Eq. (likesection15) is the sum of two identical Gaussians centered at different
ν values. Consider the one centered at ν = 1/Lo, which involves the exponential with the
ν − 1/Lo term. The total variance is then twice the integral of this Gaussian:

〈z2〉 = 2

√
π

2
σwCzz(0)

∫ ∞
−∞

exp

[
−1

2
(2πσw)2(ν − 1/Lo)

2

]
dν .

Letting x = ν − 1/Lo gives

〈z2〉 = 2

√
π

2
σwCzz(0)

∫ ∞
−∞

exp
[
−c2x2

]
dx ,

where c2 = 1
2
(2πσw)2. The integral∫ ∞

0

exp
[
−c2x2

]
dx =

√
π

2c

then gives the final result:

〈z2〉 = 4

√
π

2
σwCzz(0)

√
π

2 1√
2
2πσw

= Czz(0) . (16)
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Figure 1: The Horoshenkov autocovariance Czz(`) and elevation variance spectral density
S2s(ν) for typical parameter values taken from their Table 3.
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Thus starting with a variance of Czz(0) in the autocovariance of Eq. (likesection13), obtaining
the variance spectral density from the Fourier ν-transform of the autocovarience, and then
integrating the variance spectral density over ν thus gives back the variance as originally
specified in the autocovariance function.

However, if the above process is naively carried through starting (as in Eq. likesection14)
with the k-transform of Eq. (3) on the Fourier Transforms page, the end result (as in Eq.
equation16) is 2πCzz(0). This extra factor of 2π is rectified by the 1/2π factor seen in Eq.
(likesection7). Thus the k version of the Horeshenkov spectral density is

S2s(k) =
1

2π

√
π

2
σwCzz(0)

{
exp

[
−1

2
σ2
w(k + qo)

2

]
+ exp

[
−1

2
σ2
w(k − qo)2

]}
. (17)

Integration of this S2s(k) over all k then results in 〈z2〉 = Czz(0), as required. The inverse
k transform of the spectral density (equation17) gives Czz(`)/(2π), as expected from Eq.
(likesection9).
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