
The representation of sea surfaces as sums of sinusoids suggests further analysis using
Fourier transforms, which will be a fundamental mathematical tool for our subsequent study
of sea surfaces. There are many texts on Fourier transforms. Bracewell (1986) is a standard
reference, and excellent sets of lecture notes and videos of lectures can be found on the web.
The results needed for the subsequent discussions will therefore be stated without proof.

Continuous Fourier Transforms

Given a real function z(x) of a continuous variable x, the Fourier transform ẑ(ν) of z(x) is
defined as

ẑ(ν) ≡ F{z(x)} ≡
∫ ∞
−∞

z(x)e−i2πνxdx . (1)

The inverse Fourier transform is given by

z(x) ≡ F−1{ẑ(ν)} ≡
∫ ∞
−∞

ẑ(ν)e+i2πνxdν . (2)

It can be shown that if we insert the ẑ(ν) integral of Eq. (likesection1) into Eq. (likesection2),
we recover z(x). (This is known as Fourier’s integral theorem, the proof of which is not
trivial.) Equations (likesection1) and (likesection2) are termed a Fourier transform pair.

Understanding the units of a Fourier transform is important. In our case, z(x) is sea
surface elevation, and both z and x have units of meters. Equation (likesection1) shows that
ẑ(ν) thus has units of m2. The variance of z also has units of m2, which gives the first hint at
a profound connection between the variance of a physical quantity and its Fourier transform.
The units of m2 in the Fourier transform can be rewritten as m/(1/m), which is units of z
divided by units of spatial frequency ν. Indeed, the transform ẑ(ν) can be interpreted as
showing ”how much of z there is per unit frequency interval.” The inverse transform then
has units of (z over frequency) times frequency, which returns the original units of z.

A Fourier transform is a spectral density function. The integral of a spectral density func-
tion over a given frequency interval gives the variance in the physical quantity contributed
by the frequencies in the integration interval. Density functions are rather peculiar math-
ematical creatures compared to point functions, which simply give the value of something
at a given value of the independent variable (e.g. the temperature at location x and time
t). The blackbody radiation function is another example of a spectral density function. The
blackbody function shows how much energy is emitted (at a given temperature) per unit
frequency interval of the emitted electromagnetic radiation. The blackbody function is dis-
cussed on the page A Common Misconception. If you are not familiar with the distinction
between point and density functions, especially regarding how to change variables in density
functions, you should take a look at the page on blackbody spectra before continuing with
the present discussion.

The Fourier transform definitions above with the 2π in the exponents are those of the
“Stanford school” of Bracewell (1986) and Goodman (1996). You will see others in the
literature. For example, if we use k = 2πν as the frequency variable, then Eqs. (likesection1)
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and (likesection2) become

ẑ(k) ≡ F{z(x)} ≡
∫ ∞
−∞

z(x)e−ikxdx (3)

and

z(x) ≡ F−1{ẑ(k)} ≡ 1

2π

∫ ∞
−∞

ẑ(k)e+ikxdk . (4)

This reappearance of the 2π in the second equation is required so that the inverse transform
of the transform gets you back to where you started. In the e±ikx version, some people put
the 1/2π in front of the other integral, and some put a 1/

√
2π in front of each integral.

Some authors, e.g. Press et al. (1992), put the +i in Eq. (likesection1) and the −i in Eq.
(likesection2). The choice of which sign to use on the i and where to put the 2π is almost
a religion—most people stay with what they first learned, are convinced of the superiority
of their definition, and are willing to die rather than change. Fortunately, it doesn’t matter
which definitions you use, so long as you are consistent in how the transform pair is defined
so that you get back to where you started if you inverse transform a transform, or vice versa.

In our work, z(x) is the sea surface elevation, which is a real number. However, even
though z(x) is real, ẑ(ν) (or ẑ(k)) is complex. Expanding the complex exponential in Eq.
(likesection1) as the sum of a cosine and a sine, it is easy to see that ẑ∗(ν) = ẑ(−ν). Such
functions are called Hermitian. A real function has a Hermitian Fourier transform. Con-
versely, if a function is Hermitian, it has a real inverse Fourier transform. The Hermitian
property will be an important constraint on the next pages when we wish to generate ran-
dom realizations of a sea surface by computing the inverse Fourier transform of a complex
function: we will have to conjure up a Hermitian function ẑ so that we end up with a real
sea surface.

Discrete Fourier Transforms

Now suppose that we have sampled the sea surface z(x) at a set of N evenly spaced points
xr, r = 0, 1, ..., N − 1, in a region of size L; xr = r∆x = rL/N . We want to describe
this sampled sea surface z(xr) as a sum of sinusoids. In general, these N values can be
represented as a sum of a constant term, N/2 cosine terms, and N/2 − 1 sine terms (recall
that there is no two-point sine term):

z(xr) =
a0
2

+

N/2∑
u=1

[au cos(kuxr) + bu sin(kuxr)] , (5)

with bN/2 ≡ 0. Note that the sum runs from the fundamental frequency (u = 1, k1 = 2π/L)
through the Nyquist frequency (u = N/2, kN/2 = 2π/(2∆x)), with only a cosine term for the
two-point wave. This sum is equivalent to

z(xr) =

N/2∑
u=−N/2+1

cue
ikuxr , (6)
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which also contains a total of N independent real and imaginary parts of the cn coefficients.
(Recall from Eq. (5) of the previous page that c−k = c∗k, so these coefficients are not
independent for +k and −k pairs.) These equations are the discrete-variable forms of Eqs.
(6) and (7) of the previous page.

Comment on notation: It is common to use the letters i, j, k for dummy summation
indices. However, we’ve already used i for

√
−1 and k for angular wavenumber, so the

preceding equations would be hopelessly confusing if we reused i and k for summation indices.
We will therefore use r and s for indices on spatial variables, e.g., (xr, ys), and u and v for
indices on frequency variables, e.g., ku or νv. n and m also will be used as needed for dummy
indices.

We now have a finite number N of discrete samples z(xr) of the sea surface, so we need
a discrete form of the Fourier transform. The discrete Fourier transform (DFT) of z(xr) is
defined as

ẑ(νu) ≡ D{z(xr)} ≡
1

N

N−1∑
r=0

z(xr)e
−i2πνuxr .

for u = 0, 1, ...., N − 1. Recalling that νu = u/L = u/(N∆x) and xr = r∆x = rL/N gives
νuxr = ru/N . It is also common to write z(xr) = z(r) and ẑ(νu) = ẑ(u), in which case the
previous equation becomes

ẑ(u) ≡ D{z(r)} ≡ 1

N

N−1∑
r=0

z(r)e−i2πru/N . (7)

The corresponding inverse discrete Fourier transform is given by

z(r) ≡ D−1{ẑ(u)} ≡
N−1∑
u=0

ẑ(u)e+i2πru/N . (8)

It was emphasized above that the continuous function ẑ(ν) defined by the continuous
Fourier transform (likesection1) is a density function with units of z(x) per spatial frequency
interval, e.g., m/(1/m) if z is sea surface height in meters. However, the discrete function
ẑ(u) defined by the discrete Fourier transform (likesection7) has the same units as z(r). The
discrete Fourier transform is a point function that shows how much of z(r) is contained in
a finite frequency interval ∆ν = 1/L centered at frequency νu = u/L. Discrete Fourier
transforms convert point functions z(r) to point functions ẑ(u).

The F and D notations will be used to distinguish continuous vs. discrete Fourier
transforms. As just seen, the continuous and discrete transforms are different mathematical
constructs with different units and interpretations; they must not be confused. Likewise, if
necessary, a subscript can be appended to show the frequency variable, e.g., Fν{z(x)} as
in Eq. (likesection1) or Fk{z(x)} as in Eq. (likesection3). As always, there are competing
definitions. Equations (likesection7) and (likesection8) are used in Bracewell and the IDL
computer language. Numerical Recipes interchanges the i and −i. Matlab puts the 1/N
factor on the inverse transform. Also, Matlab does not support array indices of 0, so the
summation indices are shifted from 0 to N − 1 to 1 to N , with a corresponding shift from
ru to (r − 1)(u − 1) in the exponentials. The devil is in the details, and details like where
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to put the 1/N factor and differences in array indexing in different computer languages can
cause great misery when it comes time to actually write computer programs or to compare
results computed by different canned subroutines.

The sums in the last two equations require computing complex exponentials (i.e., sines
and cosines), multiplying by the corresponding values of z(r) or ẑ(u) and adding up the
results. These equations can be evaluated for any value of N . The number of computations
required to do this is of order N2. The computation time thus increases very rapidly for
large N .

However, a classic paper by Cooley and Tukey (1965) showed how these sums can be
computed in order N log2N computations, if N is a power of 2. Their technique is now called
the Fast Fourier Transform or FFT. The difference in computer time becomes enormous for
large N . For example, if N = 212 = 4096, then N log2N = 4096 × 12, and the difference
in computation time is a factor of N2/(N log2N) ≈ 341. Thus in the case of N = 4096,
a roughly 6 minute computer run becomes a 1 second run. The development (or, perhaps,
reinvention, since the basic idea goes all the way back to Gauss) of the FFT was a major
advance in numerical analysis, which enables the computations on the following pages to
be performed extremely efficiently. Subroutines for computing FFTs and inverse FFTs are
available in all computer languages commonly used in science (Fortran, C, IDL, Matlab,
etc). Fortunately we do not need to concern ourselves here with the details of how the FFT
algorithm actually works, any more than we need to worry about how a canned subroutine
actually computes the cosine of a number. If you are interested in how the FFT works, a
web search will yield many detailed explanations. It is important to remember that the FFT
is not another type of transform; the FFT is a numerically efficient way to evaluate the DFT
if the number of data values is a power of two.

The one-dimensional (1-D) equations seen above are easily extended to two or more
dimensions. For two dimensions (x, y), we can sample a region of size Lx by Ly meters over
Nx points in the x direction and Ny points in the y direction, with Nx and Ny both powers
of 2 so we can use FFTs. Equations (likesection5) and (likesection6) then become

z(xr, ys) = &
a0
2

+

Nx/2∑
u=1

Ny/2∑
v=1

[au,v cos(kuxr + kvys) + bu,v sin(kuxr + kvys)]

= &

Nx/2∑
u=−Nx/2+1

Ny/2∑
v=−Ny/2+1

cu,ve
i(kuxr+kvys) . (9)

The corresponding 2-D DFT pair is

ẑ(u, v) ≡ D{z(r, s)} ≡ 1

NxNy

Nx−1∑
r=0

Ny−1∑
s=0

z(r, s)e−i2π(ru/Nx+sv/Ny) (10)

and

z(r, s) ≡ D−1{ẑ(u, v)} ≡
Nx−1∑
u=0

Ny−1∑
v=0

ẑ(u, v)e+i2π(ru/Nx+sv/Ny) . (11)

It will be important below to keep notational track of continuous vs. discrete versions of
various functions. For any variable S, S(k) will denote a continuous function of k, S(k = ku)
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will denote the continuous function evaluated at the discrete value ku, and S(ku) = S(u) will
denote a discrete point function. Keep in mind that the density function S(k = ku) and the
point function S(ku) have different units. In the following pages S(k) and S(ku) will denote
the continuous and discrete versions, respectively, of wave elevation variance spectra.

The differences in units between continuous and discrete Fourier amplitudes sometimes
makes it tricky to make the transition between discrete and continuous versions of the same
quantity. In particular, it will be necessary to explicitly include the frequency intervals
in some of the later calculations that involve both continuous and discrete variables. For
example, if we have a continuous density function and we need to convert to a corresponding
discrete function, we must multiple the continuous function by the finite frequency interval,
e.g.

ẑ(u) = ẑ(ν = νu)∆ν . (12)

Conversely, if we have discrete amplitudes ẑ(u) and we wish to estimate the continuous
spectral density ẑ(ν), then we must divide by the frequency interval:

ẑ(ν) = ẑ(u)/∆ν . (13)

(If you are an optical oceanographer familiar with the scattering phase function, you can find
an analogous situation in the estimation of the scattering phase function from measurements
of scattered light. The scattering phase function is a measure of how much light energy
is scattered from an incident direction into a particular direction, per unit solid angle; it
therefore has units of 1/steradian. If you measure the scattered light using an instrument
with a finite solid angle ∆Ω, then you get the total amount of energy scattered into the
solid angle ∆Ω. To estimate the phase function from this measurement, you must divide
the measured value by the solid angle of the instrument; this gets you back to units of
1/steradian.)

Frequency Ordering

There is a peculiarity to most (perhaps all) FFT subroutines. The discrete FFT of Eq.
(likesection7) returns an array of N complex numbers ẑ(u), which are associated with N
discrete spatial frequencies. What is peculiar is the order in which the elements of the ẑ(u)
array are returned by an FFT subroutine.

Let ∆f represent the fundamental frequency. If wavenumber ν is the frequency variable,
then ∆f = 1/L. If angular spatial frequency k is the frequency variable, then ∆f = 2π/L; for
temporal angular frequency ω, ∆f = 2π/T . In any case, the discrete frequencies associated
with the discrete Fourier amplitudes are equally spaced at intervals of ∆f and are in the
negative-to-positive order{

−N
2

+ 1,−N
2

+ 2, ...,−1, 0, 1, ...,
N

2
− 1,

N

2

}
∆f . (14)

I’ll call this the “math frequency order” because this is the natural order of arranging values
in mathematics. This frequency order is convenient for plotting all of the amplitudes, as
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will be seen in the following pages. Plots showing both negative and positive frequencies are
called “two-sided,” and examples will be seen below.

However, FFT routines generally return their amplitudes corresponding to frequencies in
the order of 0 first, then the positive frequencies from the smallest to the Nyquist frequency,
then the negative frequencies in reverse order:{

0, 1, ...,
N

2
− 1,

N

2
,−N

2
+ 1,−N

2
+ 2, ...,−1,

}
∆f . (15)

I’ll call this the “FFT frequency order.” Given the Hermitian symmetry of the amplitudes
about the 0 frequency, the FFT order is convenient for plotting amplitudes only for the
positive frequencies, with the negative-positive symmetry of ẑ understood. Such plots are
called “one-sided” or “folded.”

Either frequency order can be obtained from the other by a repeated circular shift, which
moves an array element off of one end of an array and copies it to the other end of the array,
shifting all elements right or left by one position in the process. The detail to watch is that
different computer languages define a circular shift in different ways. For example, the IDL
routine SHIFT (and the Matlab routine CIRCSHIFT) moves the array elements to the right
for a “positive” shift (a negative shift moves elements to the left), whereas the Fortran 95
CSHIFT routine moves the array elements to the left for a positive shift (a negative shift
moves elements to the right). Thus

In IDL:

math order = SHIFT(FFT order, N/2-1)

FFT order = SHIFT(math order, -(N/2-1))

In Fortran95:

math order = CSHIFT(FFT order, -(N/2-1))

FFT order = CSHIFT(math order, N/2-1)

Some FFT routines allow the user to set a flag specifying which frequency order is to be
returned. In any case, sorting out the frequency order of the amplitudes returned by a
particular FFT routine, and figuring out how to shift between math and FFT frequency
orders in a particular computer language, can drive you to tears.

Note finally that in Eq. (likesection7) you are simply providing an array of z(r) values
and getting back the same number of ẑ(u) values. What x(r) values correspond to the z(r)
values is irrelevant. That is, x(r), r = 0, ..., N−1 might correspond to the spatial range from
x = 0 to L, or from x = −L/2 to L/2, or to any other x range. It is only the number of
samples N and the corresponding z(u) values that matters. In other words, the amplitudes
coming out of the Fourier transform are independent of the origin of the spatial coordinate
system. The frequencies depend on both the number of points N and the physical size of
the sampled region via the presence of L (or time interval T ) in the fundamental frequency
∆f . Thus the size of the region sampled and the number of samples, along with the sample
values themselves, fully define the associated Fourier transforms.
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Interpretation of Negative Frequencies

The appearance of negative frequencies in Fourier transforms may seem somewhat mysteri-
ous. Frequency, after all, is a physical quantity that is inherently a positive number, e.g., the
number of wavelengths in a given distance. However, one way to interpret mathematically
negative frequencies is that they are simply the mathematical price we pay for the conve-
nience of using complex numbers. Consider, for example, the representation of the cosine as
a sum of complex exponentials for the uth frequency:

cos(2πνuxr) = &
1

2

(
ei2πνuxr + e−i2πνuxr

)
= &

1

2

(
ei2π(+νu)xr + ei2π(−νu)xr

)
.

We can interpret the complex representation of the real cosine as having one term with a
positive frequency +νu and one term with a negative frequency −νu. A similar equation
holds for the complex representation of sin(2πνuxr). The Fourier transform of a real func-
tion always contains both negative and positive frequencies, which arise from the complex
exponentials in the definition of the transform.

Additional comments about negative frequencies will be made on later pages, where it
will be seen that positive frequencies can be associated with waves propagating in the +x
direction, and negative frequencies correspond to waves propagating in the opposite, −x,
direction.

Parseval’s Relations

The physical and spectral variables of a continuous Fourier transform pair satisfy∫ ∞
−∞
|z(x)|2dx =

∫ ∞
−∞
|ẑ(ν)|2dν , (16)

which is known as Parseval’s relation. For complex amplitudes, |ẑ|2 = ẑẑ∗. The corre-
sponding equation for the discrete Fourier transform pair defined by Eqs (likesection7) and
(likesection8) is

N−1∑
r=0

|z(r)|2 = N
N−1∑
u=0

|ẑ(u)|2 . (17)

The extension to the two-dimensional case is straightforward:

Nx−1∑
r=0

Ny−1∑
s=0

|z(r, s)|2 = NxNy

Nx−1∑
u=0

Ny−1∑
v=0

|ẑ(u, v)|2 . (18)

The discrete forms of Parseval’s relations provide important checks on numerical calcu-
lations. For example, it is easy to misplace factors of N, which appear in different places
depending on the exact form used for the definition of the discrete transforms.

You can take a class in Fourier transforms and prove many more beautiful theorems
about their properties. However, we have now assembled the mathematical tools needed to
describe wind-blown sea surfaces, and so we can now get back to oceanography.
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