
This page uses a contrived example to illustrate the preceding theory for a one-dimensional
(1D) surface. Detailed comments on this simple example emphasize the mathematical sub-
tleties and physical characteristics of Fourier transforms and wave variance spectra derived
from surface elevations. A thorough understanding of this example takes us much of the way
to understanding the case of a real ocean surface.

An ad hoc, one-dimensional wave profile is constructed using the formula

z(xr) = z(r) =

N/2∑
j=0

A(j) cos[2πjxrνf + φ(j)] r = 0, ..., N − 1 . (1)

The xr locations are given by r∆x = rL/N , where L is the length of the sea surface region
being sampled and N is the number of samples. νf = 1/L is the fundamental spatial
frequency, that is, the spatial frequency or wavenumber of the wave with a wavelength of L.
The amplitude of the wave at the jth frequency, j = 1, 2, ..., N/2, is chosen to be

A(j) = 0.1 exp(−3j/N) ,

and A(0) = 0. The phase of the jth wave component is randomly distributed over [0, 2π)
using

φ(j) = 2πU

where U is a uniform [0, 1) random number. A different random number is drawn for each
j value.

The upper left panel of Fig. figure1 shows the surface generated in this manner for
L = 10 m, N = 16, and a particular set of random phases. Note that N is a power of 2 as
will be needed for the FFT. The thin colored lines show the N/2+1 = 9 waves for each of the
frequencies. The blue line is the wave for the fundamental frequency νf = 1/L = 0.1 m−1;
the thin black line is the two-point wave at the Nyquist frequency νNy = 1/(2∆x) = 0.8m−1;
the purple line is the constant j = 0 wave, which is set to z = 0 for the mean sea surface. The
black dots connected by the thick black line show the sum of the individual waves. These
points represent a discrete sampling of the continuous sea surface elevation.

In this example, the sampled region of the sea surface is L = 10 m in length, but the
N = 16 samples do not include the point at x = 10 m. This is because the surface elevation
at x = L is always the same as at x = 0 when using Fourier techniques. Resolving the
surface as a sum of sinusoids that are harmonics of the fundamental frequency νf = 1/L
gives sinusoids that always return to their initial value after distance L. Real sea surfaces are
of course not periodic, but we do not know the true value at L because it was not measured
by the present sampling scheme. (Likewise, we do not know the true surface elevations
at points in between the sampled locations.) When we use Fourier techniques to generate
random surface realization, we are always generating a sea surface that is a periodic tiling ;
the tile dimension is L. This periodicity is useful if we want to generate a visual rendering
of a large region of sea surface from a smaller computed region; the edges of the small tiles
will match perfectly and the larger surface will often look reasonable, if you don’t look too
closely. An example of a tiled two-dimensional surface can be seen in Fig. 3.9 of Mobley
(2016).
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Figure 1: A one-dimensional random sea surface and its Fourier transform and variance
spectrum. The black dots in the upper-left panel show the points z(u) of the sampled sea
surface. The light colored lines show the sinusoidal components used to create the surface.
The upper-right panel shows the real part of the complex amplitude ẑ(νu) and the lower-left
panel shows the imaginary part. The lower right panel shows the two-sided and one-sided
discrete variance spectra. Compare with Figs. figure2 and figure3.

We now take the sequence of the N = 16 real wave elevations z(r) seen in Fig. figure1
and feed them into an FFT routine. We soon get back 16 complex numbers, the ẑ(νu) = ẑ(u)
Fourier amplitudes, at a set of 16 corresponding frequencies νu. The upper right panel of
Fig. figure1 plots the real part of the ẑ(u) complex numbers, and the lower-left panel plots
the imaginary part.

Note first that the FFT routine returned both negative and positive spatial frequencies:

ν = (−N
2

+ 1)∆ν = −0.7 m−1, ...,−0.1, 0, 0.1, ...,
N

2
∆ν = 0.8 m−1 ,

for a total of N = 16 discrete spatial frequencies. Note that the frequency spacing ∆ν
equals the fundamental frequency νf = 1/L. The Fourier Transforms page discussed the
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interpretation of negative frequencies. (The order of the frequencies as returned by the FFT
routine was the “FFT order” discussed on the Fourier Transforms page. The frequencies,
and the corresponding amplitudes, were reordered to get the “math order” used for plotting.)

Note next that the real parts of the complex amplitudes ẑ(u) are even functions of
frequency: Re{ẑ(−νu)} = Re{ẑ(+νu)}. The imaginary parts are odd functions of frequency:
Im{ẑ(−νu)} = −Im{ẑ(+νu)}. In Fig. figure1 the positive and negative frequencies are
connected by a red arrow for one particular frequency pair, νu = ±0.6 m−1. If a complex
function c(ν) = a(ν)+ ib(ν) has an even real part a(ν) and an odd imaginary part b(ν), then
c∗(−ν) = c(ν), i.e. the function is Hermitian. Thus the plots verify that the amplitudes are
Hermitian, as is always the case for the Fourier transform of a real function. The Hermitian
character of the complex amplitudes means that these N = 16 complex numbers contain only
16 independent real and imaginary numbers, not 32 as would be the case for 16 arbitrary
complex numbers. In general the FFT of N real numbers (e.g., N spatial samples of a
sea surface) gives back N independent numbers, so that the “information content” of the
physical and Fourier representations is the same.

The positive frequency at N
2

∆ν = 0.8 m−1 is the Nyquist frequency. There is, however,
no value for the negative of the Nyquist frequency. Note also in the lower left panel that
the imaginary part of the amplitude is identically zero at the Nyquist frequency. We will
explain these values below.

The lower-right panel of the figure shows the values of |ẑ(νu)|2. The values at the negative
to positive frequencies are connected by the black dotted line. These points constitute the
two-sided discrete variance spectrum,

S2S(νu) = |ẑ(νu)|2 for u = −N
2

+ 1, ...,
N

2
. (2)

“Two-sided”, denoted by the subscript 2S, refers to spectra showing both the negative and
positive frequencies. The variance at zero frequency is the variance contained in the constant
mean sea level. This value is zero because we have set the mean sea level to zero.

Oceanographers are often concerned only with the variance at a given magnitude of the
spatial frequency, and not with whether the frequency is negative or positive. Nor is there
any reason to plot the point at zero frequency, which is usually zero by choice of zero for the
mean sea level. It is therefore customary to define the one-sided variance spectrum

S1s(νu) = S2s(−νu) + S2s(νu) , (3)

for u = 1, 2, ..., N
2
− 1, and S1s(νNy) = S2s(νNy). Then only the positive frequencies are

plotted. The points connected by the solid black line in the lower-right panel of Fig. figure1
comprise the one-sided variance spectrum. In the present simulation, the two-sided spectrum
is symmetric for positive and negative frequencies (except for the Nyquist frequency, which
does not have a negative counterpart and is always a special case), and the one-sided function
is simply twice the value of the two-sided function for the positive frequencies, except for
the Nyquist frequency. When you read a paper and it refers to or plots “the variance (or
energy or power) spectrum” without further comment, it is always the one-sided spectrum.
However, on the next pages we will have to use two-sided spectra, in which case we will have
to account for the magnitude difference in one- and two-sided spectra.
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There is an important detail to note in the computation and plotting of S(u), as in
the lower-right panel of Fig. figure1. The values of S(u) were obtained by the discrete
Fourier transform of Eq. (??), and S(u) gives the variance contained in a finite frequency
interval ∆ν = 1/L at the discrete frequency νu. ∆ν equals the fundamental frequency and
is the frequency interval used in the calculations and the plot. As noted in the discussion
of the discrete transform, S(u) is a point function. As was seen in Eq. (13) of the Fourier
Transforms page, if we wish to convert the discrete S(u) to an estimate of the continuous
variance spectral density S(ν), we must divide by the discrete function by the frequency
interval: S(ν) = S(u)/∆ν. The units of S(ν) are then m2/(1/m), as expected for a spectral
density function of spatial frequency. It is important to distinguish between a discrete
variance point function and a continuous variance spectral density.

Now return to Eq. (1) and set all of the phases φ(j) to zero. We are then adding
together cosines to create the surface wave profile, which is seen in the upper left panel of
Fig. figure2. The FFT of this profile gives the real part of ẑ(νu) as positive numbers except
for the 0 frequency, and the imaginary part is identically zero for all frequencies.

If we set all of the phases φ(j) to π/2, we are then adding together sines to create the
surface wave profile, which is seen in the upper left panel of Fig. figure3. The FFT of this
profile gives the real part of ẑ(νu) identically zero and the imaginary part is nonzero except
for the 0 and Nyquist frequencies.

These two figures show that the real part of the complex amplitude ẑ(νu) tells us how
much of z(xr) is composed of cosine waves, and the imaginary part shows how much of z(xr)
is composed of sine waves. This explains why the imaginary part of the amplitude is zero at
the Nyquist frequency. The two-point wave at the Nyquist frequency is inherently a cosine
wave because, as noted previously, a two-point sine wave is sampled only at its zero values.
The general case of a wave component with a phase that is neither 0 (nor a multiple of 2π)
nor π/2 (nor an odd integer multiple of π/2) can be written as a sum of cosine and sine
waves, as in Eqs. (3) and (6) of the Wave Representations page. In that case, both the real
and imaginary parts of the amplitudes are nonzero (except for the special cases of the 0 and
Nyquist frequencies).

Note that in each of these three simulations, which differ only by the phases of the
component sinusoidal waves, the variance spectrum is exactly the same (except at the Nyquist
frequency), as seen in the lower right panels of Figs. figure1-figure3. That is to say, the
variance contained in a wave does not depend on the reference coordinate system used to
describe it, even though the Fourier amplitudes ẑ(u) do depend on the coordinate system.
The variance depends only on the amplitude of the wave. The variance at the Nyquist
frequency is largest when cosine waves are added and is zero when sine waves are added. In
the first case, we have the maximum possible amplitude of the two-point cosine wave, and
in the latter case there is no two-point wave.
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Figure 2: A one-dimensional surface composed of cosine waves. Compare with Figs. figure1
and figure3.
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Figure 3: A one-dimensional surface composed of sine waves. Compare with Figs. figure1
and figure2.
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