
One final step remains: the addition of time dependence to generate a sequence of the
sea surface realizations. Many scientific applications do not need time dependence. This
is the case when many independent random realizations of sea surfaces are used for Monte
Carlo ray tracing to compute the average optical reflectance and transmittance properties
of wind-blown sea surfaces. However, time dependence is crucial for applications such as
computer-generated imagery for movies.

We already have the needed theory in hand from the page on Spectra to Surfaces: 2D.
The fundamental are equations from that page are
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These quantities are evaluated as described on that page, but with the evaluations done
at particular times t. Most importantly, these equations make no simplifying assumptions
about the ±k symmetry of the two-sided variance spectrum Ψ2s(k).

As we have learned, the Fourier transform of a snapshot of the sea surface gives a two-
sided variance spectrum with identical values for −k and +k. This represents equal amounts
of energy propagating in the −k and +k directions, i.e., equal amounts of energy in waves
propagating upwind and downwind. Such a situation in nature gives standing waves. Here
also, if Ψ2s(−k) = Ψ2s(k), the time-dependent surface will be standing waves composed of
waves of equal energy propagating the +k and −k directions. To obtain waves propagating
downwind, as is the case in a real ocean, we must use an asymmetric two-sided spectrum
with Ψ2s(−k) << Ψ2s(+k), so that almost all of the energy is propagating downwind.
Note, however, that we cannot simply set Ψ2s(−k) = 0, which represents no energy at all
propagating upwind. This is because Ψ2s(−k) = 0 destroys the Hermitian property of Eq.
(2). Thus we must conjure up an asymmetric variance spectrum that allows a nonzero
(although perhaps negligible) amount of energy to propagate upwind.

An asymmetric two-sided variance spectrum can be constructed using an asymmetric
spreading function Φ(k, ϕ) as described on the previous page, Spreading Function Effects .
Spreading functions of the form

Φ(k, ϕ) = Cs cos2S(k)(ϕ/2) (3)

described there allow some energy to propagate in −k directions, i.e. when |ϕ| > π/2. With
this choice of a spreading function, we can let the magnitude of Ψ2s(+k) equal the magni-
tude of the one-sided variance function Ψ1s(+k), which gives the total variance, because we
assume that a negligible amount of the total energy propagates in −k directions. With this
assumption, there is no division of Ψ1s(+k) by 2 in the first line of Eq. (1). That is, we are
starting with a two-sided, asymmetric spectrum, not with a one-sided spectrum based on
the assumption of upwind-downwind symmetry.
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Once an asymmetric Ψ2s(±k) has been defined, we can evaluate Eq. (1) for a set of
random numbers ρ(kuv) and σ(kuv). This is done only once. Then to generate a sequence
of sea surface realizations for times t = 0,∆t, 2∆t, ..., we multiply the time-independent
amplitudes by the time-dependent cosines and sines as was shown previously in
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We thus obtain the amplitudes ẑ(kuv, t) at the current time t. The inverse Fourier trans-
form of this ẑ(kuv, t) gives the sea surface z(xrs) at time t.

The physics (or lack thereof) of this process is simple. We start with a realization of
the sea surface at time zero. This surface contains waves of many discrete frequencies kuv
traveling in all directions ϕuv. Then to get the surface at any later time t, we simply
propagate the sinusoidal waves of each frequency kuv in their original direction of travel
through a phase change determined by the time step and the dispersion relation ω(kuv).
For deep-water gravity waves, the dispersion relation is ω(kuv) =

√
gkuv. It thus visually

appears that the waves are propagating and the sea surface profile is changing with time.
However, this Fourier transform technique is really just moving a collection of independent,
non-interacting sinusoids through frequency-dependent phase angles to create a new surface
realization from the sum of the phase-shifted sinusoids. In a real ocean, waves of difference
frequencies can interact with each other (redistribute energy among frequencies) in highly
complex and nonlinear ways, so that the sea surface statistics may not be time-independent.
This is, in particular, how little waves grow to big waves when the wind begins to blow over
a level surface. Modeling the nonlinear evolution of a sea surface is beyond the abilities of
Fourier transform techniques which are, at heart, just a mathematical artifice based on a
time-independent directional variance density spectrum.

Figure figure1 shows a sequence of surface realizations for a 10 m s−1 wind speed and a
spatial grid of size Lx × Ly = 100 × 100 m, and a grid resolution of Nx × Ny = 256 × 256.
A time series of images made with such a course grid could be useful for some non-scientific
purposes.

We have seen that the spatial pattern of a sea surface generated by a Fourier transform
is periodic. This is convenient for tiling a small computed region into a visually acceptable
larger region. When time dependence is included and a finite-length time series of images
is created, the sequence of images is not periodic in time because the various sinusoids
comprising the surface do not have a common period. As pointed out by Tessendorf (2004),
this can be remedied by “quantizing” the temporal frequency ω(kuv) as follows.
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Figure 1: A time-dependent sequence of 2-D sea surfaces for a 10 m s−1 wind speed. The
physical domain is 100× 100 m; the sampling is 256× 256 points. The vertical scale of the
plots is -3 to +3 m. The wind is blowing in the +x direction, which is from the upper left
to the lower right of each figure.
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Let Tr be the length of time over which the time sequence of surface realizations should
exactly repeat. The number of frames Nt in the video loop determines the time step between
frames, ∆t = Tr/Nt. For a smoothly moving sea surface, Nt must be large enough that ∆t is
less than about 0.1 s. Define ωo ≡ 2π/Tr. For deep-water gravity waves, the true temporal
frequency ω(kuv) =

√
gkuv is replaced by

ω̃(kuv) =

⌊√
gkuv
ωo

⌋
ωo , (5)

where bxc converts a real number x into its integer part (e.g., 15.23 is converted to 15).
This operation slightly alters the temporal frequency of each wave component so that each
component returns to exactly its initial shape after time Tr. A video loop can then be
created from the sequence of surfaces, and the loop will match perfectly when the frame
for time Tr − ∆t goes to the frame for time Tr, which is the same surface as time 0, after
which the surfaces repeat. This adjustment to ω is greatest for the lowest frequencies, but
the adjustment becomes smaller and smaller as the repeat time becomes larger and larger.
It is thus easy to create a time-dependent small area of sea surface that can be tiled in both
space and time to create an image of a larger sea surface over a longer time. This is good
enough to fool movie-goers.

In order to employ a re-scaled variance spectrum as described on page Numerical Resolu-
tion, determine the value of the δNy parameter using the omnidirectional variance spectrum,
as seen in Eq. (7) of that page. Then apply the δ(k) correction to the directional spectrum
Ψ(kx, ky) with k = kuv for each (kx(u), ky(v)) point of the rectangular grid.

An example of a 20-second (simulated time) video loop created using all of these tricks
can be seen at video loop. This shows a time series of 2D sea surface realizations generated
using the variance spectrum of Elfouhaily et al. (1997) with a frequency-dependent cosine-
2S spreading function. This omnidirectional elevation variance spectrum was adjusted as
described on page Numerical Resolution at the higher spatial frequencies so that unresolved
slope variance (from frequencies higher than the kx and ky Nyquist frequencies resolvable by
a 512 by 512 DFT grid) is fully resolved. The true dispersion relation ω =

√
gk was quantized

for each discrete spatial frequency so that the surface is exactly periodic after 20 seconds.
Note in particular that the significant wave heights H1/3 are slightly greater on average than
the value of 2.25 m predicted by a Pierson-Moskowitz spectrum, which has somewhat less
energy than the Elfouhaily et al. spectrum used here. Note also that the along-wind (mssx)
and cross-wind (mssy) mean square slopes are very close to what is expected by Cox-Munk
statistics: 0.031 and 0.019 respectively. The sequence of plots used to create the video loop
was created by IDL routine cgAnimate 2D SeaSurface.pro. The plots created by the IDL
routine were then combined into the video using VideoMach.
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