
This page gives two examples of wave elevation variance spectra. The Pierson-Moskowitz
omnidirectional spectrum describes gravity waves in a “fully developed” sea. A fully devel-
oped sea is an idealization of the statistically steady-state wave field resulting from a steady
wind blowing for an infinitely long time over an infinite fetch. (In practice, the duration and
fetch required to achieve something close to a fully developed sea depend on the wind speed.
A steady wind of 5 m s−1 blowing for 10 hours over a fetch of 60 km might be adequate; for
hurricane winds of 35 m s−1, a fetch of a few thousand kilometers and a duration of several
days would be required. Thus it is much easier to approach a fully developed sea at low
wind speeds than at high.)

The Elfouhaily et al. directional spectrum includes both gravity and capillary waves
scales. Moreover, it has a parameter that describes the wave age, so than any sea state
from young (the wind has just started blowing) to fully developed can be simulated. The
Elfouhaily et al. spectrum will be used to generate the two-dimensional sea surface examples
on the following pages.

The Pierson-Moskowitz Omnidirectional Gravity Wave

Spectrum

The omnidirectional Pierson and Moskowitz (1964) spectrum, formulated in terms of angular
spatial frequency k, is
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]
[m2/(rad/m)] , (1)

where

α = 0.0081,

β = 0.74,

g = 9.82 m s−2 is the acceleration of gravity,

U19 is the wind speed in m s−1 at 19.5 m above the sea surface, and

k is the angular spatial frequency in rad m−1.

The wind speed at 19.5 m can be obtained from the more commonly used wind at 10 m
above the sea surface by the approximate formula

U19 ≈ 1.026U10 .

As has already been noted, it is often of interest to express a variance spectrum in terms
of other variables, such as the wavenumber ν or the temporal angular frequency ω. To change
variables in a spectral density function, the key is to recall that a variance density function
by definition expresses the variance per unit frequency interval. The variance contained
in some interval dk of the spatial angular frequency equals the variance contained in the
corresponding interval dν of the wavenumber or the interval dω of the temporal frequency.
Thus we have

SPM(k)dk = SPM(ν)dν = SPM(ω)dω .
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To change the variable from k = 2πν to ν, the previous equation gives

SPM(ν) = SPM(k)
dk

dν
= SPM(k = 2πν)2π ,

which results in

SPM(ν) =
α

8π2ν3
exp
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]
[m2/(1/m)] . (2)

To change variables from spatial angular frequency k to temporal angular frequency ω, we
use the dispersion relation for gravity waves in deep water,

ω2 = gk ,

to evaluate
dk

dω
=

2ω

g
,

which leads to

SPM(ω) =
αg2

ω5
exp

[
−β
(

g

ωU19

)4
]

[m2/(rad/s)] . (3)

All of these formulas have units of meters squared over the appropriate frequency. (The
quantities dk/dν and dk/dω seen in the conversions are the Jacobians for the one-dimensional
changes of variables.) Figure figure1 shows the Pierson-Moskowitz spectrum as functions of
k and ω for wind speeds of U10 = 5, 10, and 15 m s−1.

This spectrum has withstood the test of time fairly well (Alves and Banner (2003)) as a
description of gravity waves in fully developed seas. However, it should not be used for high-
frequency (short-wavelength) gravity waves, and certainly not for capillary waves. Likewise,
it does not describe young seas, which have not had the time or fetch needed to approach
the state of a well developed sea.

Figure figure2 shows the Pierson-Moskowitz slope spectra for three wind speeds. Note
that the slope spectrum falls off much more slowly for high frequencies than does the elevation
spectrum. That means that the higher frequencies contribute much more to the total slope
variance than they do to the total elevation variance.

The Elfouhaily et al. Directional Gravity-CapillaryWave

Spectrum

In order to model two-dimensional sea surfaces z(x, y), we need a 2-D wave elevation variance
spectrum that describes the distribution of wave variance for waves propagating in difference
directions. The numerical examples of 2-D sea surfaces to be seen on the following pages use
the 2-D elevation variance spectrum of Elfouhaily et al. (1997), which is described here for
later reference. For brevity, this paper and their model are denoted here by “ECKV,” taken
from the initials of the authors’ last names.

The ECKV spectrum has an omnidirectional variance spectrum that explicitly includes
both the gravity and capillary wave scales. The boundary between gravity and capillary
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Figure 1: The Pierson-Moskowitz variance spectrum as functions of k and ω for wind speeds
of U10 = 5, 10, and 15 m s−1. The vertical dotted lines at k = 370 rad/m and ω = 60.3 rad/s
show the boundary between gravity and capillary waves.

Figure 2: The Pierson-Moskowitz slope spectrum for wind speeds of U10 = 5, 10, 15 m s−1.
The plot uses the same ordinate scale as used for the elevation spectrum in the left panel
of Fig. figure1 in order to highlight the slow falloff of the slope spectrum compared to the
elevation spectrum. The vertical dotted line is the boundary between gravity and capillary
waves.
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waves is taken to be k =
√
ρg/τ = 370 rad/m, the angular spatial frequency at which the

restoring forces (which tend to bring a wave surface back to an unperturbed level surface)
of gravity and surface tension are equal. The corresponding wavelength is Λ = 2π/370 =
0.017 m. ECKV then combine their omnidirectional spectrum with a spreading function to
obtain their one-sided, directional variance spectrum. Using their notation, the 2-D ECKV
spectrum has the form

Ψ(k, ϕ) =
1

k
S(k)Φ(k, ϕ) [ECKV 45] . (4)

Here S(k) is the 1-D omnidirectional spectrum with units of m2/(rad/m), and Φ(k, ϕ) is
a non-dimensional spreading function. Ψ(k, ϕ) thus has units of m2/(rad/m)2. Equation
labels such as [ECKV 45] give for reference the corresponding equation in the ECKV paper.

The ECKV omnidirectional spectrum is

S(k) =
Bl +Bh

k3
[ECKV 30] , (5)

where Bl is the low-frequency (long gravity wave) contribution to the variance, and Bh is the
high-frequency (short gravity wave to capillary wave) contribution. (The quantity k3S(k)
is called the curvature or saturation spectrum and is of interest in physical oceanography
because it is related to the rate of variance dissipation of the waves. Thus ECKV refer
to Bl and Bh as the low and high frequency curvature spectra.) The components of the
omnidirectional spectrum are given by

LPM = & exp[−1.25(kp/k)2] [ECKV 2]

Γ = & exp{− 1

2σ2
[(
√
k/kp − 1)2]} [below ECKV 3]

Jp = &γΓ [ECKV 3]

Fp = &LPMJp exp{−0.3162Ωc(
√
k/kp − 1)} [ECKV 32]

Fm = &LPMJp exp[−0.25(k/km − 1)2)] [ECKV 41]

&(Note : A typo in ECKV Eq. 41 omitted the LPMJp factor in Fm)

Bl = &0.5αp(cp/c)Fp [ECKV 31]

Bh = &0.5αm(cm/c)Fm [ECKV 40]

where

α = 0.0081,

β = 1.25,

g = 9.82 m s−2 is the acceleration of gravity,

U10 is the wind speed in m s−1 at 10 m above the sea surface

k is the angular spatial frequency in rad m−1

Ωc is defines the age of the waves for the given wind speed:
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= 0.84 for a fully developed sea (corresponds to Pierson-Moskowitz)

= 1 for a “mature” sea [used in ECKV Fig 8a]

= 2 to 5 for a “young” sea; the maximum allowed value is 5

Cd10N = 0.00144 is a drag coefficient [value deduced from ECKV Fig 11]

u∗ =
√
Cd10NU10 is the friction velocity [using ECKV 61]

ao = 0.1733 (ECKV 59)

ap = 4.0

km = 370.0 rad/m

cm = 0.23 m/s is the phase speed of the wave with spatial frequency km

am = 0.13u∗/cm [ECKV 59]

γ = 1.7 if Ωc ≤ 1 else γ = 1.7 + 6 log10(Ωc)

σ = 0.08(1 + 4Ω−3
c )

αp = 0.006Ω0.55
c [ECKV Eq. 34]

αm = 0.01[1 + ln(u∗/cm)] if u∗ ≤ cm else αm = 0.01[1 + 3 ln(u∗/cm)] [ECKV 44]

ko = g/U2
10

kp = koΩ
2
c is the spatial frequency of the maximum of the spectrum

cp =
√
g/kp is the phase speed of the wave with spatial frequency kp

c =
√

(g/k)(1 + (k/km)2) is the phase speed of the wave

At the lower frequencies, the ECKV spectrum is essentially the Pierson-Moskowitz spec-
trum (the LPM term above) with an enhancement (the Jp term) that adds more energy to
the lower frequencies. The highest frequencies have a cutoff due to viscous damping of the
smallest capillary waves. The ECKV omnidirectional elevation and slope spectra are illus-
trated in Fig. figure3 for the case of a fully developed sea and three wind speeds. Figure
figure4 shows the spectra as a function of wave age for a wind speed of U10 = 10 m s−1.

Spreading Functions

The ECKV spreading function is given by

Φ(k, ϕ) = &
1

2π
[1 + ∆(k) cos(2ϕ)]

= &
1

2π

{
1 + tanh

[
ao + ap(c/cp)

2.5 + am(cm/c)
2.5
]

cos(2ϕ)
}

(6)

Note that this function is symmetric about ϕ = π/2; i.e., the function has symmetric
spreading downwind and upwind. This is consistent with a symmetric variance spectrum
Ψ(−k) = Ψ(k) as would be obtained from the Fourier transform of a snapshot of a sea
surface. This symmetry will be explained on the following pages.
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Figure 3: The omnidirectional part S of the ECKV elevation variance spectrum (left panel)
and slope spectrum k2S (right panel) for fully developed seas and wind speeds of U10 =
5, 10, 15 m s−1. The gray lines show the corresponding Pierson-Moskowitz spectra from Fig.
figure2.

Figure 4: The omnidirectional part of the ECKV elevation spectrum (left panel) and slope
spectrum (right panel) for a wind speed of U10 = 10 m s−1 and wave ages from very young
(Ωc = 5) to mature (Ωc = 1) to fully developed (Ωc = 0.84). Compare with Fig. figure3.
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Figure 5: Example spreading functions according to the ECKV model (left) and the cosine-
2s model (right) for a wind speed of 10 m s−1. Small s values correspond to large spatial
frequencies k. Downwind is to the right, upwind is to the left.

A commonly used family of alternate spreading functions is given by the “cosine-2s”
functions of Longuet-Higgins et al. 1963, which have the form

Φ(k, ϕ) = Cs cos2s(ϕ/2) , (7)

where the normalizing coefficient is

Cs =
1

2
√
π

Γ(s+ 1)

Γ(s+ 1/2)
,

and s is a spreading parameter that in general depends on k, U10, and wave age. In this
equation Γ is the customary gamma function defined by Γ(p) ≡

∫∞
0
xp−1e−xdx where p >

0. The cosine-2s functions are asymmetric, with much stronger downwind than upwind
propagation.

The ECKV and cosine-2s spreading functions are illustrated in Fig. figure5. Both of
these functions satisfy the normalization condition (??). Both spreading functions transi-
tion from strongly forward peaked at low spatial frequencies (long gravity waves; the red
curves) to curves with significant propagation at right angles to the wind at high frequencies
(capillary waves; the blue curves). The cosine-2s curves are asymmetric in ±k and have at
least a small amount of upwind propagation at all frequencies (except at exactly upwind,
ϕ = π). Not surprisingly, the real ocean is more complicated than either of these models.
In particular, observations of long-wave gravity waves tend to show a bimodal spreading
about the downwind direction, which transitions to a more isotropic, unimodal spreading at
shorter wavelengths (Heron (2006). However, the simple models of Eqs. (likesubsection6)
and (likesubsection7) are adequate for the present purpose of illustrating surface-generation
techniques. The effect of the choice of spreading function on the generated waves will be
illustrated on the Spreading Function Effects page.

On the following pages we will learn the important distinction between “one-sided” or
“folded” spectra and the associated “two-sided” spectra. The ECKV spectrum as given
above is a one-sided spectrum.
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