
Figure 1: James Clerk Maxwell (1831-1879).
”War es ein Gott, der diese Zeichen schrieb?” (”Was it a God who wrote these symbols?”)
—Ludwig Boltzmann, commenting on Maxwell’s equations (and recycling a quote from
Goethe’s Faust).

This page begins a qualitative overview of Maxwell’s equations. Entire books have been
written about these equations, so two pages are not going to teach you much. The goal here
is to present the fundamental ideas and, hopefully, inspire you to continue to study these
equations in the references provided. The discussion presumes a knowledge of basic physics
(concepts such as electric charge and current, and electric and magnetic fields). Knowledge
of vector calculus (divergence and curl in particular) is needed to understand the equations,
but you can understand the basic ideas even without the math. If you are unfamiliar with the
basic physics and math of electric and magnetic fields, or need a good review, an excellent
place to start is A Student’s Guide to Maxwell’s Equations by Fleisch (2008). That tutorial
spends 130 pages covering what is presented here.

Physical Preliminaries: Electric and Magnetic Fields

Recall the Lorentz equation for the force F exerted on an electric charge q moving with
velocity v through an electric field E and a magnetic filed B (in SI units):

F = q(E + v ×B).

In this discussion, vectors in 3D space are indicated by bold-faced symbols. The × indicates
the vector cross product. The Lorentz equation gives us the units for electric and magnetic
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fields. The force on the charge due to the electric filed is F = qE, so the units of electric
field must be

[E] =
[F ]

[q]
=

newton

coulomb
,

where [...] denotes ”units of ...”. Similarly, magnetic fields have units of

[B] =
[F ]

[qv]
=

newton

coulomb meters per second
.

You will see equivalent forms for these units. A newton per coulomb is the same as a volt
per meter. An ampere is a current of a coulomb per second, so we can write [B] = N/(A m),
which is called a Tesla (T). Table center1 summaries for reference the quantities seen in
Maxwell’s equations.

The first two quantities in Table center1 are worthy of comment. The electric constant
or permittivity of free space, εo, is an empirical constant that measures an electric field’s
ability to “penetrate” a vacuum. In other words, it sets the strength of the force between two
electric charges separated by some distance in a vacuum. This is seen if you write Coulomb’s
law as

F =
1

4πεo

q1 q2
r2

,

where F is the magnitude of the force (in newtons) between charges q1 and q2 (in coulombs)
separated by a distance r (in meters) in a vacuum. The value of εo is not derived from
fundamental physics; it must be measured. This can be done by measuring the force between
two charges, but is more accurately measured with a parallel plate capacitor. Similarly, the
magnetic constant or permeability of free space, µo, measures a magnetic field’s ability to
penetrate a vacuum. It sets the strength of the magnetic force between two current-carrying
wires separated by some distance in a vacuum. It also must be measured. Why do these two
fundamental constants have the particular values shown in Table center1? This is a question
like “why does an electron have the charge it has, and not some other value?” All that can
be said is that these values are what they are because that is just how the universe works.

By the way, an electric field of 1 V/m is a very weak field: just think of a large parallel
plate capacitor with the plates separated by 1 m and connected by a 1 V battery. The
electric field between a thundercloud and the ground is of order 105 V/m just before a
lightning discharge. On the other hand, a 1 T magnetic field is really strong. The Earth’s
magnetic field at the surface is about 5 × 10−5 T. Important research has shown that a 16
T magnetic field is so strong that it can overcome the force of gravity and levitate a living
frog (Berry and Geim, 1997. Eur. J. Phys 18, 307-313).

Mathematical Preliminaries: Divergence and Curl

In order to enjoy Maxwell’s equations, it is necessary to understand the mathematical no-
tation. For the benefit of readers who are not familiar with vector calculus, the needed
operations are as follows.

A scalar field S(x, y, z, t) associates a number with each point in space and time. An
example is the temperature in room. A vector field V(x, y, z, t) = V(x, t) associates a vector
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Physical
quantity &
Symbol &
SI Units &
Comment
Electric con-
stant & εo
& ≈ 8.8542 ×
10−12A2 s4 kg−1 m−3

(or C2 N−1 m−2)
& measures a
vacuum’s abil-
ity to support
an electric
field;
also called the
permittivity of
free space
Magnetic con-
stant & µo

& ≈ 1.2566 ×
106kg m s−2 A−2

(or N A−2) &
measures a vac-
uum’s ability
to support a
magnetic field;
also called the
permeability of
free space
Electric charge
& q & coulomb
(C) & a funda-
mental physical
quantity
Charge density
& ρ & C m−3 &
charge per unit
volume
Electric current
& I & ampere
(A = C/s)
& measures
flow of electric
charge per unit
time
Current density
& J & A m−2 &
current per unit
area
Electric
field & E
& N/C = V/m
& a vector
field set up
by stationary
electric charges
or time varying
magnetic fields;
acts on sta-
tionary electric
charges
Magnetic
field & B &
N/(A m) = T
& a vector
field set up
by moving
electric charges
(currents)
or by time-
varying electric
fields;
acts on moving
electric charges
Electric dipole
moment & p
& C m & mea-
sures charge
separation;
direction is
from negative
to positive
charge
Polarization &
P & C m/m3 &
electric dipole
moment per
unit volume
Magnetic
dipole
moment &
m & A m2 &
measures the
magnetic field
set up by a
loop of current;
direction is by
a right-hand
rule or
from south pole
to north
Magnetization
& M &
(A m2)/m3

& magnetic
dipole mo-
ment per unit
volume
Electric
displacement &
D & C/m2 &
D = εoE + P
Magnetic
intensity & H
& A/m & H =
B/µo −M

Table 1: Quantities involved in Maxwell’s equations. Other than the physical constants εo
and µo, all quantities are functions of time and space, e.g., E = E(x, t) = E(x, y, z, t).
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(a magnitude and a direction)

V(x, y, z, t) = Vx(x, y, z, t)x̂ + Vy(x, y, z, t)ŷ + Vz(x, y, z, t)ẑ

with each point in space and time. An example is the wind blowing outside your home.
The “del” operator ∇ (sometimes also called “nabla”) can be thought of as a vector

whose elements are partial derivative operators defined (in cartesian coordinates) as

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
.

Applying the del operator to a scalar gives a vector, called the gradient of the scalar field:

∇S = x̂
∂S

∂x
+ ŷ

∂S

∂y
+ ẑ

∂S

∂z
.

Just like any vector, we can take the dot product of ∇ with a vector, and the result is a
scalar. Taking the dot product of the del operator with a gradient gives a scalar:

∇ · ∇S = ∇2S =
∂2S

∂x2
+
∂2S

∂y2
+
∂2S

∂z2
.

This is usually called the Laplacian of S, and ∇2 is called the Laplace operator.
The divergence of a vector field is defined as

∇ ·V =
∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

.

The cross product of two vectors a = axx̂ + ayŷ + azẑ and b = bxx̂ + byŷ + bzẑ is

a× b = (aybz − azby)x̂ + (azbx − axbz)ŷ + (axby − aybx)ẑ .

In the same fashion we get the curl of a vector field, which is the cross product of ∇ with
the vector field and yields a vector:

∇×V =

(
∂Vz
∂y
− ∂Vy

∂z

)
x̂ +

(
∂Vx
∂z
− ∂Vz

∂x

)
ŷ +

(
∂Vy
∂x
− ∂Vx

∂y

)
ẑ .

There is a useful trick for remembering the order of the vector components and derivatives
in the curl if you know how to expand the determinant of a 3 × 3 matrix. Write the unit
direction vectors in the first row of the determinant, the partial derivatives in the second
row, and the vector components in the third row:

∇×V =

∣∣∣∣∣∣
x̂&ŷ&ẑ
∂
∂x

& ∂
∂y

& ∂
∂z

Vx&Vy&Vz

∣∣∣∣∣∣ .
Then expand the determinant just as though the elements were ordinary numbers, and let
the derivatives operate on the vector elements.

Thus the divergence and curl are just certain combinations of the spatial derivatives of a
vector field. Each has a physical interpretation when the vector field is a physical variable
such as the velocity or an electric field. However, just knowing the definitions is sufficient
for our level of presentation of Maxwell’s equations.
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Maxwell’s Equations in Vacuo

Without further ado, Maxwell’s equations for the electric field E(x, t) and magnetic field
B(x, t) in a vacuum are (in differential form, in SI units)

∇ · E = &
1

εo
ρ (1)

∇ ·B = &0 (2)

∇× E = &− ∂B

∂t
(3)

∇×B = &µoJ + µoεo
∂E

∂t
(4)

Note that “in a vacuum” means that the electric and magnetic fields are in empty space.
There can still be electric charges located here and there in space (the ρ term), and the same
for currents (J), which give rise to the fields in the region of interest.

These equations can be described as follows:

Eq.(likesection1) This equation is called Gauss’s law for electric fields. It shows how elec-
tric charges (the charge density ρ) create electric fields. This equation is the equivalent
of Coulomb’s law for a point charge.

Eq.(likesection2) This equation is sometimes called Gauss’s law for magnetic fields. It
says that there are no magnetic charges corresponding to electric charges.

Eq.(likesection3) This is Faraday’s law. It shows that a time-varying magnetic field creates
an electric field.

Eq.(likesection4) This is Ampere’s law as modified by Maxwell. The first term on the
right, deduced by Ampere, shows that electric currents create magnetic fields. The
second term on the right, added by Maxwell, shows that a time-varying electric field
also creates a magnetic field.

Thus there are two ways to create electric fields: electric charges create them, and time-
dependent magnetic fields create them. One might suppose that the electric fields resulting
from these two entirely different creation mechanisms could some way be different, but they
are not. An electric field is an electric field, no matter how it is created. That’s just the way
the universe works. (Pondering this equivalence of electric fields, no matter how created,
was one of the things that lead Einstein to the development of special relativity.) The
same situation holds for magnetic fields. They can be created by electric currents or by
time-dependent electric fields, but the nature of the magnetic field is the same in either case.

Simply stating Maxwell’s equations is really no different than simply stating Newton’s
law of gravity for the magnitude of the force of attraction between two spherical masses M1

and M2 separated by a distance r:

F = G
M1M2

r2
. (5)
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Newton did not derive his law of gravity from more fundamental principles; it is the fun-
damental principle. Newton found that if he assumed Eq. (likesection5) to be true, then
he could derive Kepler’s laws of planetary motion, the motion of the moon, and (to first
order) the ocean tides. The same can be said of Maxwell’s equations. They are based on
decades of observational work by Coulomb, Gauss, Faraday, Ampere and others, but we can
view them as the mathematical statement of the fundamental laws governing electric and
magnetic fields. We can simply accept these equations as given and get on with the business
of applying them to problems of interest. (Of course, “fundamental laws of nature” may
turn out of be imperfect in the light of new data. That happened to Newton’s law of gravity,
which was replaced by, and can be derived from, Einstein’s theory of general relativity. Like-
wise, Maxwell’s equations can now be derived from the more fundamental laws of quantum
electrodynamics developed by Feynman and others.)

It may at first glance seem that Maxwell’s equations are over-determined. That is,
there are four equations but only two unknowns, E and B. This would be true for algebraic
equations, in which case we could solve two linearly independent equations for two unknowns.
However, for vector fields, Helmholtz’s theorem (also known as “the fundamental theorem
of vector calculus”) says that an arbitrary vector field in 3 dimensions can be uniquely
decomposed into a divergence part (with zero curl) and a curl part (with zero divergence)
(under a few conditions, namely vector functions that are sufficiently smooth and that decay
to zero at infinity). Conversely, knowing the divergence and curl of a vector field determines
the vector field. That is the case here for both E and B. Given the charge density ρ and
current density J, the four Maxwell equations uniquely determine the electric and magnetic
fields via their divergences and curls. (To be rigorous, a vector field is determined from its
divergence and curl to within an additive term. This is somewhat like saying that knowing
a derivative df(x)/dx determines f to within an additive constant. Adding a boundary
condition f(xo) = fo then fixes the value of the constant.)

Light as an Electromagnetic Phenomenon

Starting with equations (likesection1) to (likesection4), Maxwell derived what is probably the
most elegant and important result in the history of physics. Consider a region of space where
there are no charges (ρ = 0) or currents (J = 0). Equations (likesection1)-(likesection4) then
become

∇ · E = &0 (6)

∇ ·B = &0 (7)

∇× E = &− ∂B

∂t
(8)

∇×B = &µoεo
∂E

∂t
(9)

Now take the curl of Eq. (likesection8), use the vector calculus identity ∇×(∇×E) = ∇(∇·
E)−∇2E, use Eq. (likesection6) to eliminate the ∇(∇ ·E) term, and use Eq. (likesection9)
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to rewrite the ∂(∇×B)/∂t term. The result is

∇2E = µoεo
∂2E

∂t2
.

The same process starting with the curl of Eq. (likesection9) gives an equation of the same
form for B. Equations of the form

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
=

1

v2
∂2f

∂t2

describe a wave propagating with speed v. Thus each component of E and B satisfies a wave
equation with a speed of propagation

v =
1

√
µoεo

. (10)

Inserting the experimentally determined values of µo and εo given in Table center1 gives
v = 3×108m s−1. As Maxwell observed (in A Dynamical Theory of the Electromagnetic Field,
1864, §20), “This velocity is so nearly that of light that it seems we have strong reason to
conclude that light itself (including radiant heat and other radiations) is an electromagnetic
disturbance in the form of waves propagated through the electromagnetic field according to
electromagnetic laws.” This conclusion is one of the greatest intellectual achievements of all
time: not only were electric and magnetic fields tied together in Maxwell’s equations, but light
itself was shown to be an electromagnetic phenomenon. This is the first example of a “unified
field theory,” in which seeming independent phenomena—here electric fields, magnetic fields,
and light—were shown to related and governed by the same underlying equations.
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